
Architected for Performance

NVMe® Zoned Namespace SSDs & The Zoned
Storage Linux® Software Ecosystem
Sponsored by NVM Express® organization, the owner of NVMe®, NVMe-oF™ and NVMe-MI™ standards

2

Speakers

Damien Le Moal
Director, System

Software Group at
Western Digital

Javier González
Principal Software

Engineer, SSDR R&D
Center Lead at

Samsung Electronics

3

Agenda
 Zoned Storage and NVMe® Zoned Namespaces
 Specifications overview

 Linux Kernel Zoned Block Device Support
 Zoned Block Device abstraction
 Support history, key features and user API

 Applications zoned block device support
 Legacy applications: File systems and device mapper
 Optimized applications: zonefs, libzbd, libnvme, xNVME, SPDK

 Tools
 QEMU® ZNS device emulation, nvme-cli, blkzone, fio

 Example applications
 RocksDB, Apache Hadoop® / HDFS

 Summary

4

Zoned Storage and NVMe® Zoned Namespaces
New storage paradigm

5

Why Zoned Storage?
 Lower storage cost ($/TB)

 HDDs: increased capacity with shingled magnetic
recording

– Zones of overlapped tracks
 SSDs: reduced OP and device resources

– E.g. DRAM
 Allowing the host to contribute to data placement

simplifies the device implementation
 Expose sequential write constraint of media

– Zones of overlapped tracks on SMR HDDs
– NAND die erase blocks on SSDs

 And leads to device side optimizations
 Improved device capacity

– Lower OP
 Remove device data movement (GC)

– Improved latency and throughput
 Better support for multi-tenant workloads

– Host data-placement

Conventional HDD
Discrete Tracks

…
SMR HDD

Overlapped Tracks

NAND Die

Erase Block

6

Specifications
 The device storage LBA space is divided into zones with

sequential write constraint
 First standardized for SMR hard-disks with ZBC for SCSI

and ZAC for ATA
 Two zone models defined

– Host managed: sequential writes in zones are mandatory
– Host aware: sequential writes are recommended but not

mandatory
– Random writes are accepted

 NVMe® Zoned Namespaces (ZNS) specifications define a
similar interface for SSDs
 Technical Proposal 4053 (Core ZNS specifications)
 Technical Proposal 4056 (Namespace Types)
 New proposals ongoing https://nvmexpress.org/developers/nvme-specification/

(Available in the 1.4 TP package)

https://nvmexpress.org/developers/nvme-specification/

7

NVMe® Zoned Namespace Overview
 New “Zoned Namespace” namespace type
 Inherits the NVM Command Set
 i.e., Read/Write/Flush commands are available

 Defines zones of fixed size to be written sequentially
 Matches NAND media write characteristics
 Support for different zone size configurations
 Various schemes can be used by the drive to

implements zone mapping to erase blocks
– No scheme defined by the specifications
– Depends on drive vendor and drive model

 Adds zone writeable capacity (zone capacity)
 Allows the zone size to be a power of 2 number of

blocks while allowing internal alignment of zones
to erase blocks

 Two write methods: Regular Writes and Zone Append

8

NVMe® Zoned Namespace Overview
 Zone States: empty, implicitly opened, explicitly

opened, closed, full, read-only, and offline
 State transitions on writes, zone management

commands, and device resets
 Zone management commands
 Report zones, Open, Close, Finish and Reset

 Active and Open Resources associated to a zone
 Limits on the maximum number of active and

open zones
 Main differences with ZBC/ZAC
 Zone capacity and active zones
 Zone append command
 Mostly compatible with ZBC/ZAC host managed

zone model

9

Linux® Kernel Zoned Block Device Support
History, key features, user API and applications support

10

Linux® Zoned Block Device Abstraction
 Generic abstraction for ZBC, ZAC and ZNS devices
 Zone types as defined by the standards

– Conventional
– Accept random writes, optional with SMR

– Sequential write required
– host-managed model only
– SMR and ZNS

– Sequential write preferred
– host-aware model only
– SMR only

 A zone may have a useable capacity lower than the
zone size (ZNS only)

 Some restrictions are added
 All zones must have the same size
 The zone size must be a power of 2 number of LBAs

Zone 0 Zone 1 Zone 2 Zone X

Zone write
pointer position

Device LBA range divided in zones

WRITE commands
advance the write
pointer up to the
zone capacity

ZONE RESET
commands rewind

the write pointer

Written data

Zone size

Zone capacity

11

Support History
 ZBD support was introduced in 2017 with kernel version 4.10
 For SMR disks
 Initial release included native f2fs support

 Following kernel versions added more features
 Device mapper support with kernel 4.13

– dm-zoned target to abstract host managed disks as regular disks
 Various improvements to the kernel internal API and user API

 Latest kernel version 5.9 (release candidate state) will introduce NVMe® ZNS
 Stable release scheduled for beginning of October 2020

 Development is still on-going
 ZBD support for dm-crypt added to kernel 5.9
 btrfs native support implementation is on-going

12

Current Kernel Support Status

13

Key Features
 Provides kernel-internal and user API (ioctl commands) for all

zone management operations
 Zone report, reset, open, close and finish

 Zone append writes supported in-kernel only
 User API is being discussed

 Provides regular write command ordering guarantees
 Does *not* reorder writes into sequential write streams
 Direct I/O writes (O_DIRECT) only for users

– No guarantees of ordered page writeback for buffered writes
 Implemented using the mq-deadline block IO scheduler

– Using a zone write locking mechanism, resulting in at most one
write per zone at any time (per specification)

 Supported devices:
 Devices following Linux ZBD zone configuration constraints
 ZNS namespaces with native zone append support

14

User API
 ioctl() commands for zone report, reset,

open, close and finish operations are
defined in include/uapi/linux/blkzoned.h in
the kernel tree
 Installed as

/usr/include/linux/blkzoned.h
 Report provides all zone information
 Zone type, start sector, size and

capacity
 Zone condition and write pointer

position
 Zone flags

– Reset recommended etc
 sysfs attribute files also available
 Number of zones, zone size, etc

/**
* Zoned block device ioctl's:
*
* @BLKREPORTZONE: Get zone information. Takes a zone report as argument.
* The zone report will start from the zone containing the
* sector specified in the report request structure.
* @BLKRESETZONE: Reset the write pointer of the zones in the specified
* sector range. The sector range must be zone aligned.
* @BLKGETZONESZ: Get the device zone size in number of 512 B sectors.
* @BLKGETNRZONES: Get the total number of zones of the device.
* @BLKOPENZONE: Open the zones in the specified sector range.
* The 512 B sector range must be zone aligned.
* @BLKCLOSEZONE: Close the zones in the specified sector range.
* The 512 B sector range must be zone aligned.
* @BLKFINISHZONE: Mark the zones as full in the specified sector range.
* The 512 B sector range must be zone aligned.
*/

#define BLKREPORTZONE _IOWR(0x12, 130, struct blk_zone_report)
#define BLKRESETZONE _IOW(0x12, 131, struct blk_zone_range)
#define BLKGETZONESZ _IOR(0x12, 132, __u32)
#define BLKGETNRZONES _IOR(0x12, 133, __u32)
#define BLKOPENZONE _IOW(0x12, 134, struct blk_zone_range)
#define BLKCLOSEZONE _IOW(0x12, 135, struct blk_zone_range)
#define BLKFINISHZONE _IOW(0x12, 136, struct blk_zone_range)

15

Applications Zoned Block Device Support
Regular File Interface

 Legacy applications can be used as-is
 Sequential write constraint handled by

filesystem or device mapper
 But performance may not be optimal

 No workload-based optimization
possible

Raw block Interface
 Applications need (potentially difficult)

modifications
 Sequential writes and zone management

mandatory
 But performance can be optimized

 Based on the application access pattern

16

Legacy Applications
Kernel components handle ZBD sequential write constraint and zone management

17

Native File System Support
 POSIX compliant file system support enables legacy

applications
 No changes required: any application can work as is

 f2fs
 Relies on conventional zones for fixed place metadata

blocks
 NVMe® ZNS devices can be supported using a secondary

device for metadata
 btrfs support in development
 Targeting kernel version 5.11 upstream release (March

2021)
 Uses zone append writes for data blocks
 Does not require any conventional zones
 100% copy-on-write operation compatible with NVMe ZNS

18

Regular Block Device Interface
 Applications relying of raw block device accesses can use

the dm-zoned device mapper
 Requires conventional zones for internal metadata and

random write buffering
 Conventional zones can be replaced by a regular SSD

– Mandatory for ZNS backing devices
 Depending on the workload and setup, performance

degradation may appear due to zone garbage collection
 Use of cache device greatly improves performance

 dm-zoned user space tool available on github
 https://github.com/hgst/dm-zoned-tools
 Documentation at

https://zonedstorage.io/linux/dm/#dm-zoned

https://github.com/hgst/dm-zoned-tools
https://zonedstorage.io/linux/dm/#dm-zoned

19

Legacy File Systems Support
 Legacy file systems (e.g. ext4 or XFS) can be enabled

with the dm-zoned device mapper target
 Depending on the workload and setup, performance

degradation may appear due to zone garbage collection
 Weak dependency on application workload
 Use of cache device greatly reduces the impact of

write buffer zone reclaim

20

Zoned Block Device Compliant Applications
Zoned Block Device constraints exposed to the user application as-is

21

Zones as Files: zonefs
 Simplify application programming by using regular file

system calls for zone access and management
 Exposes each zone of device as a regular file

– But random writes not possible: each zone file must be
written sequentially using direct I/Os

 Zone commands automatically executed as needed with
file system calls

– E.g. file truncate() implies a zone reset command
 Enables different programming language bindings

– E.g. JAVA, Python
 Zone information from the device is used as metadata
 No journaling overhead
 Static file tree structure representing device zones
 Zone write pointer indicates the file size

 User space tools available on github
 https://github.com/damien-lemoal/zonefs-tools

https://github.com/damien-lemoal/zonefs-tools

22

Zoned Block Accesses
 Device sequential write constraint, zone state machine, etc

are all exposed as-is to the application
 Relies on kernel ioctl() user API for zone management

operations
 Synchronous and asynchronous I/O usable with regular

system calls
 Restrictions:
 Direct I/O (O_DIRECT) writes only

– Buffered reads are OK
 libzbd is available to simplify application programming
 https://github.com/westerndigitalcorporation/libzbd
 Supports all zoned block device types

 xNVME can also be used
 More details in following slides

23

 Enable zone-aware applications with old kernels or
unsupported devices
 Also enables features not supported in Linux

 libnvme: NVMe® driver IOCTLs
 Base library for nvme-cli utility
 Synchronous passthrough using existing kernel

interfaces
 Link: https://github.com/linux-nvme/libnvme

 SPDK: user space NVMe® driver
 Support for ZNS Command Set (Oct 2020)
 Link: https://github.com/spdk/spdk

 libzbc: For SMR hard-disks
 Supports ATA / ZAC and SCSI / ZBC devices
 Link: https://github.com/hgst/libzbc

Passthrough Device Accesses

https://github.com/linux-nvme/libnvme
https://github.com/spdk/spdk
https://github.com/hgst/libzbc

24

Passthrough Device Accesses
 xNVMe: User-space NVMe® API (https://xnvme.io)
 Provides a common API for different I/O backends
 Synchronous and asynchronous
 In-kernel path

– io_uring, libaio, block device ioctl()
– Leverage ongoing work on io_uring passthru

 User-space path
– SPDK: Use bdev passthru and complement functionality

 Same API across OSs (FreeBSD, Windows)
 Backend selection at runtime
 Link: https://github.com/OpenMPDK/xNVMe

https://xnvme.io/
https://github.com/OpenMPDK/xNVMe

25

Tools
ZNS device emulation, system utilities and benchmark applications

26

QEMU® ZNS Device Emulation
 Enable host development without hardware
 Facilitate host debugging
 Flexible zone configurations
 Error injection
 Facilitate compliance tests

– Emulate different behaviors and device
features

 Development on-going
 v1.3 support, cleanups and refactoring

merged in Q2 2020
 SGLs, multiple namespaces (Reviewed)
 I/O Command Sets & ZNS (Reviewing)
 v1.4 support, extended meta, DULBE

(Reviewing)
 Other ZNS-related TPs will be supported

27

System Utilities
 blkzone
 Part of util-linux

– Primary Linux tool for zone device management
– git@github.com:karelzak/util-linux.git

 Common support for all zoned devices and zone
management operations

– Zone report, reset, open, close and finish
 nvme-cli
 Primary Linux tool to manage NVMe® devices

– https://github.com/linux-nvme/nvme-cli.git
 ZNS extensions

– ZNS Identification: Controller & Namespace
– ZNS Management: State transitions, send / receive,

descriptors
– ZNS Report: Zone Information & Log pages
– ZNS I/O (zone append)

mailto:git@github.com:karelzak/util-linux.git
https://github.com/linux-nvme/nvme-cli.git

28

Benchmarking
 fio: Flexible I/O Tester
 De-facto storage benchmarking tool in Linux
 https://github.com/axboe/fio

 Zoned support added in fio version 3.9
 Initially for SMR disks
 Now common support for all zoned devices

– Zone capacity support
 zonemode=zbd enables zoned I/O mode
 Other options:

– zonerange, zoneskip, read_beyond_wp
– max_open_zones, zone_reset_threshold/frequency

 Improvements for ZNS on-going
 Zone append writes and Simple Copy support

– Depend on kernel interface

https://github.com/axboe/fio

29

Example Applications
RocksDB, Hadoop/HDFS

30

RocksDB
 LSM-tree based Key-value store
 ZBD support implemented using new ZenFS storage backend
 Uses libzbd
 Maps Zones to SSTables
 Result in ~1X device write amplification

 Patches posted upstream, review in progress
 https://github.com/facebook/rocksdb/pull/6961

https://github.com/facebook/rocksdb/pull/6961

31

xZTL: LSM-based Databases
 Enable RocksDB ZNS with thin backend: ~1000 LOC
 Add zone logic for LSM DBs in xZTL
 Easy to port other DBs (e.g., Cassandra)
 Transparent support for several ZNS architectures

and I/O models
– Append: Large zones
– Stripping: Small zones

 xZTL: https://github.com/OpenMPDK/xZTL
 RocksDB w/ xZTL: https://github.com/ivpi/rocksdb

– Patches to be sent after ZenFS review
 Tight integration with xNVMe
 Leverage changes in application to run on

multiple OSs and I/O backends
 Write amplification of ~1X
 ~2X reduction in SW

https://github.com/OpenMPDK/xZTL
https://github.com/ivpi/rocksdb

32

Apache Hadoop® HDFS
 Zoned block device support from JAVA implemented

using zonefs
 Simplifies development by keeping most POSIX

semantic used with regular files
– Allows reusing many code relying on regular POSIX

system calls (read(), truncate(), etc) for chunk file
management

 zonefs use also naturally enable support for
efficient zone append write path where possible

 Early results show significant performance
improvements for large datasets
 Smaller datasets benefit from regular file systems

caching

33

Summary
 Linux® ZBD base ecosystem is mature
 Benefits from long work on SMR HDDs
 Solid sequential write constraint support

 Many tools and libraries provide help for developers
 libnvme, nvmecli, libzbd, xnvme

 Work is still on-going
 Zone append user interface semantic and implementation
 ZNS passthrough

– NVMe® command passthrough support for unsupported devices
– ZNS devices without zone append implemented

– Async passhtrough using io_uring
– SPDK

 File systems support
– f2fs single device, btrfs, ZFS

 Optimized application support
– RocksDB, Cassandra, Hadoop/HDFS, Ceph

Architected for Performance

	NVMe® Zoned Namespace SSDs & The Zoned Storage Linux® Software Ecosystem
	Speakers
	Agenda
	Zoned Storage and NVMe® Zoned Namespaces
	Why Zoned Storage?
	Specifications
	NVMe® Zoned Namespace Overview
	NVMe® Zoned Namespace Overview
	Linux® Kernel Zoned Block Device Support
	Linux® Zoned Block Device Abstraction
	Support History
	Current Kernel Support Status
	Key Features
	User API
	Applications Zoned Block Device Support
	Legacy Applications
	Native File System Support
	Regular Block Device Interface
	Legacy File Systems Support
	Zoned Block Device Compliant Applications
	Zones as Files: zonefs
	Zoned Block Accesses
	Passthrough Device Accesses
	Passthrough Device Accesses
	Tools
	QEMU® ZNS Device Emulation
	System Utilities
	Benchmarking
	Example Applications
	RocksDB
	xZTL: LSM-based Databases
	Apache Hadoop® HDFS
	Summary
	Slide Number 34

