

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

LEGAL NOTICE:

© Copyright 2007 - 2021 NVM Express, Inc. ALL RIGHTS RESERVED.
This erratum to the NVMe over Fabrics revision 1.1 specification is proprietary to the NVM
Express, Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM
Express, Inc. have the right to use and implement this erratum to the NVMe over Fabrics
revision 1.1 specification subject, however, to the Member’s continued compliance with
the Company’s Intellectual Property Policy and Bylaws and the Member’s Participation
Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of
NVM Express, Inc. and you have obtained a copy of this document, you only have a right
to review this document or make reference to or cite this document. Any such references
or citations to this document must acknowledge NVM Express, Inc. copyright ownership
of this document. The proper copyright citation or reference is as follows: “© 2007 - 2021
NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such citations or
references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way
without the prior express written permission of NVM Express, Inc. Nothing contained in
this document shall be deemed as granting you any kind of license to implement or use
this document or the specification described therein, or any of its contents, either
expressly or impliedly, or to any intellectual property owned or controlled by NVM
Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON
AN “AS IS” BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
NVM EXPRESS, INC. (ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT)
HEREBY DISCLAIM ALL REPRESENTATIONS, WARRANTIES AND/OR
COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be
claimed as the property of their respective owners.

NVM Express Workgroup
c/o VTM, Inc.
3855 SW 153rd Drive
Beaverton, OR 97003 USA

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

info@nvmexpress.org
 NVM Express™ Technical Errata

Errata ID 002

Revision Date 04/23/2021

Affected Spec
Ver.

NVMe over Fabrics 1.1

Corrected Spec
Ver.

Errata Author(s)

Name Company

David Peterson Broadcom

Constantine Sapuntzakis Pure Storage

Claudio DeSanti DellEMC

David Black DellEMC

Fred Knight NetApp

Errata Overview

This errata updates:

Section 2.1 Figure 7: Fabrics Command Capsule PDU - Submission Queue Entry Format

Section 2.3.1 Data and SGL Locations within a Command Capsule

Section 7.4.5 text

Section 7.4.5.2 text

Section 7.4.6 text

Section 7.4.9 text

Section 7.4.9.1 text

Section 7.4.10.3 text

Section 7.4.10.6 Figure 77: Command Capsule PDU (CapsuleCmd)

Section 7.4.10.8 Figure 79: Host to Controller Data Transfer PDU (H2CData)

Section 7.4.10.9 Figure 80: Controller to Host Data Transfer PDU (C2HData)

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Revision History
Revision Date Change Description

09/10/2020 Creation

12/15/2020 Added additional ECN material for review.

02/09/2021 Updates from work group review.

04/22/2021 Integrated into the NVMe over Fabrics Specification, revision 1.1.

04/23/2021 Removed the strikeout of an H.

Incompatible Changes

None

Description of Specification Changes

Modify section 2.1 as shown below:

Figure 7: Fabrics Command Capsule PDU - Submission Queue Entry Format
Bytes Description

00 Opcode (OPC): Set to 7fh to indicate a Fabrics command.

01
ReservedPSDT: This field is described in the NVMe Base Specification. Bits 7:6 of this field
should be set to 01b, and may be set to 00b.

03:02
Command Identifier (CID): This field specifies a unique identifier for the command. The
identifier shall be unique among all outstanding commands associated with a particular queue.

04
Fabrics Command Type (FCTYPE): The field specifies the Fabrics command transferred in
the capsule. The Fabrics command types are defined in Figure 14. If this field is set to a reserved
value, the command should be aborted with a status code of Invalid Field in Command.

39:05 Reserved

63:40 Fabrics Command Type Specific: This field is Fabrics command type specific.

Modify section 2.3.1 as shown below:

2.3.1 Data and SGL Locations within a Command Capsule

The Submission Queue Entry within the command capsule includes one SGL entry. If there
are additional SGL entries to be transferred in the command capsule, then those entries shall
be contiguous and located immediately after the Submission Queue Entry.

An NVMe Transport binding specification defines the support for data as part of the command
capsule. The controller indicates the starting location of data within a command capsule via
the In Capsule Data Offset (ICDOFF) field in the Identify Controller data structure.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

There are restrictions for SGLs that the host should follow:

 If the ICDOFF field is a non-zero value, then all the SGL descriptors following the
Submission Queue Entry shall not have a total size greater than (ICDOFF * 16); and

 if the SGL descriptors following the Submission Queue Entry have a total size greater
than (ICDOFF * 16), then the controller shall abort the command with the status code
set to Invalid Number of SGL Descriptors;

 the host shall not place more SGL Data Block or Keyed SGL Data Block descriptors
within a capsule than the maximum indicated in the Identify Controller data structure.;
and

 if the host places more SGL Data Block of Keyed SGL Data Block descriptors in a
capsule than the maximum indicated in the Maximum SGL Data Block Descriptors
field in the Identify Controller data structure, then the controller shall abort the
command with the status code set to Invalid Number of SGL Descriptors.

The host shall start data (if present) in command capsules at byte offset (ICDOFF * 16) from
the end of the Submission Queue Entry.

Modify section 7.4.5 as shown below:

The TCP transport is a message-based transport that uses capsules for data transfer as
defined in the Capsules and Data Transfer section of the NVMe Base Specification. All
NVMe/TCP implementations shall support data transfers using cCommand dData bBuffers
(described in section 7.4.5.1) and may optionally support in-capsule data.

Host and Ccontroller PDU Data is optionally aligned. PDU dData alignment is designed to
allow the host or controller to guarantee that the data (and data digest) starting offset to be
aligned to some value (usually a cache line). The alignment of data in a PDU is specified by
the host and the controller when a connection is established. The Controller to Host PDU
Data Alignment (HPDA) field in the ICReq PDU specifies the required alignment of PDU Data
(DATA) from the start of the PDU for PDUs that are transferred from the controller to the host.
The Host to Controller PDU Data Alignment (CPDA) field in the ICResp PDU specifies the
required alignment of PDU Data (DATA) from the start of the PDU for PDUs that are
transferred from the host to the controller. An appropriate number of padding bytes shall be
inserted by the controller or host in the PAD field to achieve the required alignment. The
number of PAD bytes is a function of the required alignment and the size of the PDU
hHeader. PDU PAD bytes are considered as reserved bytes and are not protected by HDGST
nor by DDGST. Neither Tthe Host and Controller PDU Data Alignment field (HPDA, CPDA)
nor the Controller PDU Data Alignment field (CPDA) shall not exceed 128 bytes.

Figure 64 shows an example of an H2CData PDU where the CPDA field (refer to section
7.4.10.3) was set to 0Fh by the hostcontroller in the ICResp when the connection was
established. The H2CData PDU hHeader size 24 bytes and header digest is disabled. An
alignment of 64 bytes is required, thus the host inserts 40 bytes of padding in the PAD field.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

[No change to figure 64]

Figure 65 shows an example of a C2HData PDU where the HPDA field (refer to section
7.4.10.2) was set to 03h by the host in the ICReq when the connection was established. The
C2HData PDU hHeader size 24 bytes and header digest is disabled. An alignment of 16
bytes is required, thus the controller inserts 8 bytes of padding in the PAD field.

Figure 65: Example of 64B PDU DATA Alignment in C2HDataH2CData PDU

[No change to figure 65]

Modify section 7.4.5.2 as shown below:

7.4.5.2 Controller to Host to Controller Command Data Buffer Transfers

Command dData bBuffer transfers from a host to a controller parallel the behavior of
cCommand dData bBuffer transfers from a controller to a host described in section 7.4.5.2.
They are performed from a host to a controller using one or more H2CData PDUs. The data
transferred by the H2CData PDUs starts at the beginning of the cCommand dData bBuffer
and continues sequentially to the end of the cCommand dData bBuffer (i.e., the DATAO field
in the first H2CData PDU is cleared to 0h and the DATAO field in a subsequent H2CData
PDU is equal to the DATAO field plus the DATAL field of the previous H2CData PDU).

Reception of a non-contiguous H2CData PDU is treated as a fatal transport error with the
Fatal Error Status field set to “PDU Sequence Error”.

The controller governs the rate of the data transfer from the host to the controller using Ready
to Transfer (R2T) PDUs. When a connection is established, the host specifies the maximum
number of outstanding R2T PDUs (MAXR2T) that the host supports at any point in time for
a command. The first R2T PDU of a command shall start with an offset of zero and
subsequent R2T PDUs for the command shall solicit data transfers sequentially to the end
of the cCommand dData bBuffer (i.e., the R2TO field in the first R2T PDU is cleared to 0h
and the R2TO field in subsequent R2T PDUs shall be equal to the R2TO field plus R2TL field
of the previous R2T PDU).

H2CData PDUs are sent in response to R2T PDUs and are never sent without receiving a
corresponding R2T PDU. The R2T PDU specifies the cCommand iIdentifier (refer to the
Submission Queue Entry section in the NVMe Base Specification) with which it is associated,
a transfer tag (TTAG), a data offset (R2TO) from the beginning of the cCommand dData
bBuffer, and the transfer data length (R2TL). When an R2T PDU is received by a host, then
the host transfers the data requested by the controller inas indicated by the R2T PDU. This
data transfer may be performed using one or more H2CData PDUs. H2CData PDUs must
start at the offset specified in the R2T PDU (R2TO) and transfer data contiguously until the
data transfer length specified by the R2T PDU (R2TL) is reached (i.e., the DATAO field in
the first H2CData PDU is equal to R2TO that specified in the R2T PDU and DATAO field in
subsequent PDUs is equal the DATAO field plus DATAL field of the previous H2CData PDU).
The H2CData PDU length does not exceed the maximum length communicated by the
controller during the connection establishment (MAXH2CDATA).

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Reception of a non-contiguous R2T PDU is treated as a fatal transport error with the Fatal
Error Status field in the C2HTermReq PDU set to “PDU Sequence Error”.

Reception of a H2CData PDU with a data length which exceeds MAXH2CDATA is treated
as a fatal transport error with the Fatal Error Status field in the C2HTermReq PDU set to
“Data Transfer Limit Exceeded”.

Reception of a H2CData PDU that is outside the range starting from R2TO to R2TO + R2TL
is treated as a fatal transport error with the Fatal Error Status field in the C2HTermReq PDU
set to “Data Transfer Out of Range”.

The LAST_PDU flag in H2CData PDUs is cleared to ‘0’ in all but the last H2CData PDU that
is associated with a single R2T PDU. The LAST_PDU flag is set to ‘1’ in the last H2CData
PDU that satisfies a R2T request. All H2CData PDUs used to satisfy data requested by a
controller shall have their Transfer Tag (TTAG) field set to the transfer tag specified in the
R2T PDU.

Reception of a H2CData PDU with an unknown transfer tag (TTAG) value is treated as a
fatal transport error with the Fatal Error Status field set to “Invalid PDU hHeader fField” and
the Additional Error Information field containing the TTAG field byte offset.

Reception of an unexpected H2CData PDU is treated as a fatal transport error with the Fatal
Error Status field in the C2HTermReq PDU set to “PDU Sequence Error”.

Examples of an unexpected H2CData PDUs are:
• Reception of a H2CData PDU with the LAST_PDU flag cleared to ‘0’ after reception of a
H2CData PDU with the LAST_PDU flag set to ‘1’ and is associated with the same R2T PDU.

R2T PDUs associated with a specific command shall be serviced in the order received by
the host. R2T PDUs associated with different commands received by a host may be serviced
in any order. A controller may send an R2T PDU without waiting for a previous R2T data
transfer to complete, but shall not exceed the maximum number of outstanding R2T PDUs
per command supported by the host (MAXR2T).

Reception of an R2T PDU that exceeds MAXR2T is treated as a fatal transport error with the
Fatal Error Status field in the H2CTermReq PDU set to “R2T Limit Exceeded”.

Figure 68 illustrates a command that performs a 12,288 bytes (3000h bytes) host to controller
cCommand dData bBuffer transfer using R2T PDUs:

1. The host sends a Command Capsule PDU (CapsuleCmd) to the controller containing
an SQE with a Transport SGL Data Block descriptor with a sSub tType value of Ah in
SGL1. The Length field in the descriptor has a value of 3000h;

2. The controller processes the command and sends an R2T PDU to the host that
requests 3,000 bytes (BB8h byte) of data with a data offset of zero;

3. When the host receives the R2T PDU, that host sends an H2CData PDU that transfers
1,000 bytes (3E8h bytes). The R2T Data Offset (R2TODATAO) field is cleared to 0h,
the R2T Data Length (R2TLDATAL) field is set to 3E8h, and the Last (LAST_PDU)
flag is cleared to ‘0’ since this is not the last PDU of the data transfer;

4. The host sends a subsequent H2CData PDU that transfers 2,000 bytes (7D0h bytes).
The DATAO field is set to 3E8h, the DATAL field is set to 7D0h, and the LAST_PDU

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

flag is set to ‘1’ since this is the last PDU of the data transfer requested by the R2T
PDU;

5. The controller sends a subsequent R2T PDU that transfersrequests 8,192 bytes (2000h
bytes). The R2TO field is set to BB8h and the R2TL field is set to 2000h;

6. The controller sends a subsequent R2T PDU that transfersrequests 1,096 bytes (448h
bytes) if the host supports MAXR2T greater than one. The R2TO field is set to 2BB8h
and the R2TL field is 448h;

7. The host sends a H2CData PDU that transfers 8,192 bytes (2000h bytes). The DATAO
field is set to BB8h, the DATAL field is set to 2000h, and the LAST_PDU flag is set to
‘1’ since this is the last PDU of the data transfer;

8. The host send a subsequent H2CData PDU that transfers 1,096 bytes (448h bytes).
The DATAO field is set to 2BB8h, the DATAL field is set to 448h, and the LAST_PDU
flag is set to ‘1’ since this is the last PDU of the data transfer; and

9. The controller sends a Response Capsule PDU (CapsuleResp) to the host containing
a CQE.

[No change to figure 68]

Modify section 7.4.6 as shown below:

NVMe/TCP facilitates an optional PDU Header Digest (HDGST) and Data dDigest (DDGST).
The presence of each digest is negotiated at the connection establishment.

The host requests the use of a header digest by setting the HDGST_ENABLE flag in the
ICReq PDU. The controller may accept (or reject) the use of a header digest by setting (or
clearing) the HDGST_ENABLE flag in the ICResp PDU. The PDU Header dDigest is enabled
if HDGST_ENABLE flag is set in both the ICReq and ICResp PDUs. If the PDU hHeader
dDigest is enabled, then all the subsequent PDUs transferred in this connection except
H2CTermReq and C2HTermReq PDUs shall contain a HDGST field and have the HDGSTF
flag set to ‘1’ in the PDU hHeader FLAGS field. If the PDU hHeader dDigest is enabled, the
header digest is contained within the HDGST field of the PDU and protects the PDU hHeader.
If PDU hHeader dDigest is not enabled, then all subsequent PDUs shall not contain a HDGST
field and shall have the HDGSTF flag, if defined, cleared to ‘0’ in the PDU hHeader FLAGS
field.

The host requests the use of a data digest by setting the DDGST_ENABLE flag in the ICReq
PDU. The controller may accept (or reject) the use of a data digest by setting (or clearing)
the DDGST_ENABLE flag in the ICResp PDU. The PDU Data dDigest is enabled if the
DDGST_ENABLE flag is set in both the ICReq and ICResp PDUs. If the PDU dData dDigest
is enabled, then all Command Capsule PDUs containing in-capsule data, and all H2CData
PDUs, and C2HData PDUs transferred in this connection shall contain a DDGST field and
have the DDGSTF flag set to ‘1’ in the PDU hHeader FLAGS field. If the PDU dData dDigest
is not enabled, then these PDUs shall not contain a DDGST field and shall have the DDGSTF
flag cleared to ‘0’ in the PDU hHeader FLAGS field. If data digest is enabled, the data digest
is contained within the DDGST field of the PDU and protects the PDU dData.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

If a host requests the use of header digest or data digest in the ICReq PDU, but the use of
the digest was not enabled by the controller in the ICResp PDU, then the host may refuse
the connection establishment and terminate the NVMe/TCP connection (refer to section
7.4.4).

If a host did not request the use of header digest or data digest in the ICReq PDU but the
use of the digest was enabled by the controller in the ICResp PDU, then the host shall treat
that ICResp PDU as a fatal transport error (refer to section 7.4.7) with the Fatal Error Status
field set to “Invalid PDU hHeader fField” and the Additional Error Information field containing
the DIGEST HDGST or DDGST field byte offset.

The HDGST Header and DDGST Data digests are calculated using the CRC32C algorithm
(refer to http://www.rfc-editor.org/rfc/rfc3385.txt).

Modify section 7.4.9 paragraph 2 as shown below:

TLS implementation is optional for NVMe/TCP. TLS 1.2 implementation is discouraged in
favor of TLS 1.3 due to implementation concerns described in section 7.4.9.1. TLS 1.3
implementation will be described in a future specification.

Modify section 7.4.9.1 as shown below:

The PSK cipher suite framework is described in RFC 4279. NVMe/TCP uses NQNs to identify
hosts and NVM subsystems, specifically, in the TLS handshake for a PSK cipher suite:

12. The psk_identity field in the ClientKeyExchange message shall contain the host NQN
and the subsystem NQN separated by a space (‘ ‘=U+0020h) character as a UTF-8
string, including the terminating null (00h) character.

It was discovered after initial publication that RFC 4297 section 5.3 allows TLS 1.2 PSK
implementations to limit the length of the psk_identity they support to 128 bytes and that, as
of the publication of this document, at least one popular library, OpenSSL 1.1.1, is limited to
127 byte PSK identities. Since NQNs can be larger than 128 bytes each, following the
technique above to generate the psk_identity can result in a psk_identity larger than that
supported by a TLS 1.2 PSK implementation. No workaround to this implementation limitation
is specified. As such, TLS 1.2 implementation with this issue is discouraged.

The following is an example of the psk_identity field in the ClientKeyExchange message
assuming that both the host and the NVM subsystem are using the UUID-based format NVMe
Qualified Names:

Modify section 7.4.10.3 as shown below:

Controller PDU Data Alignment (CPDA): Specifies the data alignment for all PDUs
transferred from the host to the controller that contain transfer data in addition to the PDU
Header (refer to section 7.4.1). This value is a 0’s based value in units of dwords in the range
0 to 31 (e.g., values 0, 1, and 2 correspond to 4 byte, 8 byte, and 12 byte alignment).

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Modify section 7.4.10.6 as shown below:

7.4.10.6 Command Capsule PDU (CapsuleCmd)

Figure 77: Command Capsule PDU (CapsuleCmd)

Bytes
PDU

Section
Description

00

CH

PDU-Type: 04h

01

FLAGS:

Bits Description

7:2 Reserved

1 DDGSTF: If set to ‘1’, then a valid DDGST Data digest value follows the PDU Data.

0
HDGSTF: If set to ‘1’, then a valid HDGST Header digest value follows the PDU
hHeader.

02 HLEN: Fixed length of 72 bytes (48h).

03
PDO: Data Ooffset within PDU. This value shall be a multiple of the data alignment specified by
complies to the CPDA field set by the controller in the ICResp PDU (refer to section 7.4.10.3)
that was previously sent by the controller on this TCP connection.

07:04
PLEN: Total length of PDU (including PDU hHeader, HDGST, PAD, DATA, and DDGST) in
bytes.

71:08 PSH NVMe-oF Command Capsule SQE (CCSQE): NVMe-oF Command Capsule SQE.

75:72 HDGST
HDGST: If HDGSTF is set in the FLAGS field, this field is present and contains the Hheader
digest (refer to section 7.4.6).

N - 1:76 PAD
PAD: If in-capsule data is present, the length of this shall be the necessary number of bytes
required to achieve the alignment specified by CPDA (refer to section 7.4.10.3).

M - 1:N DATA
NVMe-oF In-Capsule Data (CCICD): This field contains the in-capsule data, if any, of the
NVMe-oF Command Capsule.

M + 3:M DDGST
Data Digest (DDGST): If DDGSTF is set in the FLAGS field, and the CCICD field is present,
then this field contains the Ddata Ddigest (refer to section 7.4.6) of the CCICD field (in-capsule
data).

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Modify section 7.4.10.8 as shown below:

7.4.10.8 Host To Controller Data Transfer PDU (H2CData)

Figure 79: Host To Controller Data Transfer PDU (H2CData)

Bytes
PDU

Section
Description

00

CH

PDU-Type: 06h

01

FLAGS:

Bits Description

7:3 Reserved

2
LAST_PDU: If set to ‘1’, indicates the PDU is the last in the set of H2CData
PDUs that correspond to the same R2T PDU.

1
DDGSTF: If set to ‘1’, then a valid DDGST Data digest value follows the PDU
Data.

0
HDGSTF: If set to ‘1’, then a valid HDGST Header digest value follows the PDU
hHeader.

02 HLEN: Fixed length of 24 bytes (18h).

03
PDO: Data Ooffset within PDU. This value shall be a multiple of the data alignment specified by
complies to the CPDA field set by the controller in the ICResp PDU (refer to section
7.4.9.37.4.10.3) that was previously sent by the controller on this TCP connection.

07:04
PLEN: Total length of PDU (including PDU hHeader, HDGST, PAD, DATA, and DDGST) in
bytes.

09:08

PSH

Command Capsule CID (CCCID): This field contains the SQE.CID value of the Command
Capsule PDU associated with the cCommand dData bBuffer.

11:10
Transfer Tag (TTAG): This field contains the Transfer Tag of the corresponding R2T received
by the controller host.

15:12
Data Offset (DATAO): Byte offset from start of Command dData bBuffer. This value shall be a
multiple of dwords.

19:16 Data Length (DATAL): PDU DATA field length in bytes. This value shall be a multiple of dwords.

23:20 Reserved

27:24 HDGST
HDGST: If HDGSTF is set in the FLAGS field, this field is present and contains the Hheader
digest (refer to section 7.4.6).

N - 1:N PAD
PAD: The length of this field shall be the necessary number of bytes required to achieve the
alignment specified by CPDA (refer to section 7.4.10.3).

M - 1:N DATA PDU-Data

M + 3:M DDGST
Data Digest (DDGST): If DDGSTF is set in the FLAGS field, this field is present and contains
the data digest (refer to section 7.4.6).

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Modify section 7.4.10.9 as shown below:

7.4.10.9 Controller To Host Data Transfer PDU (C2HData)

Figure 80: Controller To Host Data Transfer PDU (C2HData)

Bytes
PDU

Section
Description

00

CH

PDU-Type: 07h

01

FLAGS:

Bits Description

7:4 Reserved

3
SUCCESS: If set to ‘1’, indicates that the command referenced by CCCID was
completed successfully with no other information and that no rResponse Capsule PDU
is sent by the Controller.

2
LAST_PDU: If set to ‘1’, indicates the PDU is the last C2HData PDU sent in response
to a Command Capsule PDU in the Command Data transfer series.

1 DDGSTF: If set to ‘1’, then a valid DDGST Data digest value follows the PDU Data

0
HDGSTF: If set to ‘1’, then a valid HDGST Header digest value follows the PDU
hHeader.

02 HLEN: Fixed length of 24 bytes (18h).

03

PDO: Data Ooffset within PDU. This value shall be a multiple of the data alignment specified by
complies to the HPDA field set by the controller in the ICReq PDU (refer to section
7.4.9.27.4.10.2) that was previously sent by the host on this TCP connection.

07:04 PLEN: Total length of PDU (including PDU hHeader, HDGST, PAD, DATA, and DDGST) in bytes.

09:08

PSH

Command Capsule CID (CCCID): This field contains the SQE.CID value of the Command
Capsule PDU associated with the host-resident data.

11:10 Reserved

15:12
Data Offset (DATAO): Byte offset from start of host-resident data. This value shall be dword
aligned.

19:16 Data Length (DATAL): PDU DATA field length in bytes. This value shall be dword aligned.

23:20 Reserved

27:24 HDGST
HDGST: If HDGSTF is set in the FLAGS field, this field is present and contains the Hheader
digest (refer to section 7.4.6).

N - 1:N PAD PAD: If HPDA is set to a non-zero value, then this field is padded as specified by HPDA.

M - 1:N DATA PDU-Data

M + 3:M DDGST Data Digest (DDGST): Data Ddigest (refer to section 7.4.6) of the PDU-Data field.

	NVM Express™ Technical Errata
	Errata Author(s)
	This errata updates:
	Section 2.1 Figure 7: Fabrics Command Capsule PDU - Submission Queue Entry Format
	Section 2.3.1 Data and SGL Locations within a Command Capsule
	Revision History
	2.3.1 Data and SGL Locations within a Command Capsule

