

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014 to 2021 NVMe™ Corporation.

LEGAL NOTICE:

© Copyright 2007 to 2021 NVM ExpressTM, Inc. ALL RIGHTS RESERVED.
This erratum to the NVM Express Management Interface revision 1.1 specification is proprietary to the NVM
Express, Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have the
right to use and implement this erratum to the NVM Express Management Interface revision 1.1 specification
subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy and
Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc. and
you have obtained a copy of this document, you only have a right to review this document or make reference
to or cite this document. Any such references or citations to this document must acknowledge NVM Express,
Inc. copyright ownership of this document. The proper copyright citation or reference is as follows: “© 2007 to
2021 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such citations or references to this
document you are not permitted to revise, alter, modify, make any derivatives of, or otherwise amend the
referenced portion of this document in any way without the prior express written permission of NVM Express,
Inc. Nothing contained in this document shall be deemed as granting you any kind of license to implement or
use this document or the specification described therein, or any of its contents, either expressly or impliedly,
or to any intellectual property owned or controlled by NVM Express, Inc., including, without limitation, any
trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” BASIS.
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG WITH
THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS,
WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON
LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property
of their respective owners.

The NVM Express® design mark is a registered trademark of NVM Express, Inc.

NVM Express Workgroup
c/o VTM, Inc.
3855 SW 153rd Drive
Beaverton, OR 97003
USA
info@nvmexpress.org

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014 to 2021 NVMe™ Corporation.

NVM Express™ Technical Errata

Errata ID 003

Revision Date 2021-02-03

Affected Spec Ver. NVM Express Management Interface 1.1b

Corrected Spec Ver. NVM Express Management Interface 1.1b+

Errata Author(s)

Name Company

Myron Loewen, Mike Allison Intel

Errata Overview

 Eliminated use of master & slave terminology wherever possible

 Eliminated the use of “execute” terminology.

 Implement some of the older pending ECN notes

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014 to 2021 NVMe™ Corporation.

Revision History

Revision Date Author Change Description

2020-09-17 Myron Loewen
 Initial draft.

 Eliminated master & slave terminology wherever possible

2020-09-25 Mike Allison
 Filled in the navigation pane information

 Eliminated the word “execute”

2020-10-12 Mike Allison  Update section 2.2

2020-11-2 Myron Loewen  Implemented 4 of the old ECN notes

2020-11-20 Myron Loewen

 Incorporated feedback from NVMe-MI workgroup review

 Moved changes for replay during process to new TPAR6031

Progress Detect During Paused Process

2020-12-02 Myron Loewen  Moved clarifications for DOFST & DLEN to TP6025A

2020-12-08 Myron Loewen
 Incorporated feedback on “Invalid Message Size” and

eliminated another case of Master Mode in SMBus Reset

2021-01-27 N/A
 Integrated into the NVMe Management Interface

Specification, Revision 1.1.

2021-02-01 Mike Allison  Removed comma from “or” with 2 conditions

2021-02-02 Austin Bolen
 Corrected language from “larger or less” to “larger or

smaller”

2021-02-03 Mike Allison  Accepted all changes and removed comments.

Incompatible Changes

 none.

Markup Conventions:

Black: Unchanged (however, hot links are removed)

Red Strikethrough: Deleted

Blue: New

Blue Highlighted: TBD values, anchors, and links to be inserted in new text.

<Green Bracketed>: Notes to editor

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014 to 2021 NVMe™ Corporation.

Description of Specification Changes

Modify section 2.2 as follows:

2.2 SMBus/I2C

...

SMBus/I2C elements that support ARP should be implemented as Default Slave Address (DSA) devices as

defined by the SMBus specification. These devices should not issue “Notify ARP Master” commands.

Modify figure 26 in section 4.1.2 as follows:

4.1.2 Response Messages

...

Figure 1: Response Message Status Values

Value Description

Error

Response

Format

Section

00h Success: The command completed successfully. 4.1.2.1

01h

More Processing Required: The Command Message is in progress and requires
more time to complete processing. When this Response Message Status is used
in a Response Message, a subsequent Response Message contains the result of
the Command Message. This Response Message Status shall not be sent more
than once per Request Message.

4.1.2.1

02h
Internal Error: The Request Message could not be processed due to a vendor
specific internal error. 4.1.2.1

03h
Invalid Command Opcode: The associated command opcode field is not valid.
Invalid opcodes include reserved and optional opcodes that are not implemented. 4.1.2.1

04h

Invalid Parameter: Invalid parameter field value. Request Messages received with
reserved or unimplemented values in defined fields shall be completed with an
Invalid Parameter Error Response. Other error conditions that result in Invalid
Parameter Error Response are noted elsewhere in this specification.

4.1.2.2

05h

Invalid Command Size: The size of the Message Body of the Command Request
Message was larger or smaller different than that expected due to a reason other
than too much or too little Request Data (e.g., the Command Request Message did
not contain all the required parameters or Request Data was present when not
expected). no Request Data was expected but the Request Data is larger than that
needed to contain the required parameters).

The expected size of the Message Body size is determined by the NVMe-MI
Message Type and opcode assuming no other errors are detected (e.g., Invalid
Command Opcode or Invalid Parameter).

4.1.2.1

Delete the 2 words “or resume” from fig. 30 in section 4.2 as follows to make the transition more generic
for all cases:

4.2 Out-of-Band Message Servicing Model

...

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014 to 2021 NVMe™ Corporation.

Modify figure 112 in section 6 as follows:

6 NVM Express Admin Command Set

...

Figure 2: NVMe Admin Command Request Description

Byte Description

03:00 NVMe-MI Message Header: Refer to section Error! Reference source not found..

04
Opcode (OPC): This field specifies the opcode of the command to be executed. Refer to
the NVM Express specification.

Modify SMBus Reset test in Section 9.3.4 as follows:

9.3.4 SMBus Reset

…

If the SMBus/I2C element on an NVM Subsystem is transmitting a Response Message in master mode, then an SMBus

Reset shall cause it to generate a STOP condition as defined in the SMBus specification within or after the current data

…

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014 to 2021 NVMe™ Corporation.

Modify portions of Appendix A as follows:

Appendix A – Technical Note: NVM Express Basic Management
Command

…

This command does not provide any mechanism to modify or configure the NVMe device. Modifying or
configuring the NVMe device requires Such features use the more capable MCTP protocol rather than this
command’s simpler SMBus Block Read. The host may reuse existing SMBus or FRU Information Device read
subroutines for this read. and is not required to switch the SMBus between master and slave modes as in
MCTP.

The block read protocol is specified by the SMBus specification which is available online at www.smbus.org.
First SMBusslave address write and command code bytes are transmitted by the host, then a repeated start
and finally a SMBusslave address read. The host keeps clocking as the drive then responds in slave mode with
the selected data. The command code is used as a starting offset into the data block shown in Error! Reference
source not found., like an address on a serial EEPROM.

The offset value increments on every byte read and is reset to zero on a stop condition. A read command
without a repeated start is permissible and starts transmission from offset zero. Reading more than the block
length with an I2C read is also permissible and these reads continue into the first byte in the next block of data.
The Packet Error Code (PEC) accumulates all bytes sent or received after the start condition and the current
value is inserted whenever a PEC field is reached.

Blocks of data are packed sequentially. The first 2 blocks are defined by the NVMe-MI workgroup. The first
block is the dynamic host health data. The second block includes the Vendor ID (VID) and serial number of the
drive. Additional blocks of data may be defined by the owner of the VID. Reading past the end of the vendor
defined blocks shall return zeros.

The SMBus slave address to read this data structure defaults to D4h. After the Management Controller
successfully assigns the MCTP UDID to D4h using ARP, then the Basic Management Command may track and
respond to slave reads at future ARP assigned MCTP addresses. This method of changing the Basic Command
address is optional and does not persist through power cycles. Interleaved MCTP and block read traffic is
permissible and neither command type shall disturb the state of the other commands.

…

The SMBus Arbitration bit may be used for simple arbitration on systems that have multiple drives on the same
SMBus channel without ARP or muxes to separate them. To use this mechanism, the host follows this 3 step
process to handle collisions for the same SMBusslave address:

1. The host does an SMBus byte write to send byte FFh which clears the SMBus Arbitration bit on all
listening Management Endpoints at this SMBusslave address;

2. The host does an I2C read starting from offset 0h and continuing at least through the serial number in
the second block. The drive transmitting a ‘0’ when other drives sent a ‘1’ wins arbitration and sets the
arbitration bit to ‘1’ upon read completion to give other drives priority on the next read;

3. Repeat step 2 until all drives are read, host receiving the Arbitration bit as a ‘1’ indicates loop is done;
and

4. Sort the responses by serial number since the order of drive responses varies with health status and
temperatures.

…

http://www.smbus.org/

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014 to 2021 NVMe™ Corporation.

Figure 3: Subsystem Management Data Structure

Command
Code

Offset
(byte)

Description

01

…
SMBus Arbitration – Bit 7 is set to ‘1’ after an SMBus block read is completed all the way
to the stop bit without bus contention and cleared to ‘0’ if an SMBus Send Byte FFh is
received on this SMBus slave address.
…

 …

07
PEC: An 8 bit CRC calculated over the SMBusslave address, command code, second
SMBusslave address, and returned data. The algorithm is defined in the SMBus specification.

8

08
Length of identification: Indicates number of additional bytes to read before encountering
PEC. This value should always be 22 (16h) in implementations of this version of the spec.

10:09
Vendor ID: The 2 byte vendor ID, assigned by the PCI-SIG. Should match VID in the Identify
Controller command response. Note the MSB is transmitted first.

11:30
Serial Number: 20 characters that match the serial number in the NVMe Identify Controller
command response. Note the first character is transmitted first.

31
PEC: An 8 bit CRC calculated over the SMBusslave address, command code, second
SMBusslave address, and returned data. The algorithm is defined in the SMBus specification.

32+ 32:255
Vendor Specific – These data structures shall not exceed the maximum read length of 255
specified in the SMBus version 3 specification. Preferably their lengths are not greater than
32 for compatibility with SMBus 2.0.

Modify a portion of Appendix C as follows:

Appendix C - Example NVMe-MI Messages over SMBus/I2C

…

The first 4 bytes and the last byte of each packet (shown in orange in the examples below) are defined by the
MCTP SMBus/I2C Transport Binding Specification. Bytes 4 to 7 of each packet and the Message Integrity
Check (green) are defined by the MCTP Base Specification. The CRC-32C algorithm and the NVMe-MI
Message Header (blue) are defined in section Error! Reference source not found.. Management Controller
transmission bytes are shown in white blocks and Management Endpoint transmission bytes are shown in grey
blocks. All messages are sent in SMBus master mode and received in slave mode so both sides must
reconfigure SMBus between commands and responses. The MCTP endpoint sending the messages drives the
clock pin so the signal direction changes between commands and responses as described in the MCTP binding
specification.

