

LEGAL NOTICE:

© Copyright 2007 - 2018 NVM Express, Inc. ALL RIGHTS RESERVED.
This NVM Express Management Interface revision 1.0a technical proposal is proprietary to the NVM
Express, Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express Management Interface revision 1.0a technical proposal
subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy
and Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2018 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such
citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the
property of their respective owners.

NVM Express Management Interface Workgroup
c/o NVM Express Administration
3855 SW 153rd Drive
Beaverton, OR 97003
admin@nvmexpress.org

NVM Express Technical Proposal for New Feature

Technical Proposal ID 6002 – In-band NVMe-MI

Change Date 1/28/2018

Builds on Specification NVM Express Management Interface 1.0a

Technical Proposal Author(s)

Name Company

Austin Bolen Dell EMC

There are features that were added to NVMe-MI for out-of-band management that are also
valuable in-band such as health monitoring at the FRU level and being able to read Vital Product
Data. NVMe enclosure services is also targeted to be defined in the NVMe-MI spec and would
also need a way to be implemented in-band. Adding in-band NVMe-MI support allows host
operating systems and management applications to take advantage of these NVMe-MI features.

3

Revision History

Revision Date Change Description

7/6/2017 • Initial draft.

9/12/2017

• Added diagrams and tables that illustrate how NVMe-MI
Request/Response Messages map onto NVMe SQE/CQE respectively

• Add requirement to make Request/Response Data Dword granular for the
in-band tunneling mechanism

• Removed Figure 35 changes since they are included in TP 001 (SES)

9/22/2017

• Changed spec that this TP builds on to 1.0a

• Fixed acronyms for Response Data and Request Data

• Updates to NVMe-MI Send/Receive command sections

10/2/2017
• Added command servicing diagrams and text to NVMe-MI Send/Receive

command sections

10/9/2017
• More updates to NVMe-MI Send/Receive sections based on workgroup

feedback

10/16/2017

• Noted in the definition of Control Primitives that they are only applicable in
the out-of-band mechanism

• Added “Packet Assembly into Messages” section with a few changes to
standardize on “NVMe-MI Message” nomenclature

• Added missing updates from VPD Write section

10/23/2017

• Removed FRU definition since it is part of TP 003.

• Modified definition of NVMe-MI Messages to make it clear what type of
MCTP Message they were

• Noted in the definitions that Request Message and Response Messages
apply in both in-band tunneling mechanism and out-of-band mechanism

• Clarified that there is no size limit for NVMe-MI Messages using the in-
band tunneling mechanism

• Added definition for “NVMe Processing” and “Process”

• Clarified that error checking is done in Process state

• Added some missing updates

• Editorial updates

10/30/2017
• Editorial updates

• Added details in NVMe-MI Send/Receive servicing flow on how to set
Tunneled NVMe Management Response

11/6/2017 • Accepted all changes

11/13/2017

• Fixed some reference numbers

• Fixed cut-and-paste errors

• Updated figures

1/28/2018
• Editorial changes to align with NVMe TP numbering, updated NVMe

administration, and updated year.

Description of Specification Changes

Modify Section 1.1 (Overview) as shown below:

NVM Express (NVMe) is a register-level interface that allows in-band host software to communicate with
an NVM Subsystem. The NVMe Management Interface (NVMe-MI) provides several mechanisms to
manage NVMe Storage Devices.

One mechanism allows a Management Controller to communicate out-of-band with an NVMe Storage
Device NVM Subsystem over one or more external interfaces. Another mechanism allows the NVMe-MI
Management Interface Command Set to be tunneled in-band via the NVMe Admin commands NVMe-MI
Send and NVMe-MI Receive. Refer to the NVM Express Specification and section 4.3 of this specification
for additional details on the NVMe-MI Send and NVMe-MI Receive commands.

NVMe Storage Devices that comply with this specification are allowed to support only the out-of-band

mechanism, only the in-band tunneling mechanism, or both the out-of-band mechanism and in-band
tunneling mechanism.

Since this specification builds on the NVMe Express specification, knowledge of NVMe is assumed.

Modify Section 1.2 (Scope) as shown below:

This specification defines an architecture and command set for out-of-band and in-band management of
an NVMe Storage DeviceNVM Subsystem.

NVMe-MI has the following key capabilities:

• Discover NVMe Storage dDevices that are present and learn capabilities of each NVMe Storage
dDevice

• Store data about the host environment enabling a Management Controller to query the data later

• Health and temperature monitoring

• Multiple Command Slotsoutstanding commands to prevent a long latency command from blocking
monitoring operations

• Out-of-band mechanism is host Pprocessor and operating system agnostic

• A standard format for VPD and defined mechanisms to read/write VPD contents

• Preserves data at rest security

Modify a portion of Section 1.2.1 (Outside of Scope) as shown below:

The management of NVMe FRUsStorage Devices containing multiple architecturally visible NVM
subsystems is outside the scope of this specification. This specification does not define new security
mechanisms.

This specification does not cover management of non-transparent bridges, or PCIe switches or
management using any interface other than MCTP over PCIe VDM or SMBus/I2C. Co-ordination between
multiple Management ControllersRequesters or a Management ControllerRequester and a device other
than a Management EndpointResponder is outside the scope of this specification. Refer to section 1.5.1
for the definitions of Requester and Responder.

Modify Section 1.3 (Theory of Operation) as shown below:

NVMe-MI is designed to provide a common interface over multiple physical layers (i.e., PCI Express,
SMBus/I2C) for inventory, monitoring, configuration, and change management. The interface provides
the flexibility necessary to manage NVMe Storage Devices Subsystems using an out-of-band mechanism
or in-band tunneling mechanism in a variety of host environments and systems.

1.3.1 Out-of-Band Theory of Operation
This specification defines two mechanisms for managing an NVMe Storage Device out-of-band. One is
via the Management Component Transport Protocol (refer to section 1.3.1.1). The other is via a FRU
Information Device (refer to section 1.3.1.2).

1.3.11.3.1.1 Management Component Transport Protocol

Commented [AB21]: TP 001 renamed this to “NVMe-
MI Out-of-Band Protocol Layering”

5

Figure 1: NVMe Management Interface Out-of-Band Protocol Layering

For the out-of-band mechanism, NVMe-MI utilizes the Management Component Transport Protocol
(MCTP) as the command transport and utilizes existing MCTP SMBus/I2C and PCIe bindings for the
physical layer. MCTP commandsCommand Messages are submitted to one of two Command Slots
associated with each Management Endpoint.

1.3.1.2 FRU Information Device

NVMe-MI also supports an out-of-band mechanism to access a FRU Information Device over SMBus/I2C
as defined by the IPMI Platform Management FRU Information Storage Definition specification. The data
stored in the FRU Information Device is referred to as Vital Product Data (refer to section 9.2).

1.3.2 In-Band Theory of Operation

For the in-band tunneling mechanism, NVMe-MI utilizes the NVMe Admin commands NVMe-MI Send and
NVMe-MI Receive. Refer to the NVM Express Specification and section 4.3 of this specification for
additional details on the NVMe-Send and NVMe-MI Receive commands.

Modify a portion of Section 1.4 (Architectural Model) as shown below:

NVMe-MI supports an out-of-band mechanism and an in-band tunneling mechanism. The architectural
model for NVMe Storage Devices that support the in-band tunneling mechanism follows the architectural
model defined in the NVM Express specification. The architectural model defined by the NVM Express
specification has been extended to support the out-of-band mechanism as described in section 1.4.1.

1.4.1 Out-of-Band Architectural Model Extensions

An NVMe storage device, such as a PCIe SSD, that implements the out-of-band mechanisms defined in
this specification, consists of an NVM Subsystem with one or more Management Endpoints. There may be
up to one Management Endpoint per PCIe port and up to one Management Endpoint per SMBus/I2C port.
Each Management Endpoint has a Port Identifier that is less than or equal to the Number of Ports (NUMP)
field value in the NVM Subsystem Information Data Structure. The Port Identifier for a PCIe port is the same
as the Port Number field in the PCIe Link Capabilities Register.

Management

Applications (e.g.,

Remote Console)

SMBus/I2C PCIe VDM

MCTP over

SMBus/I2C Binding

MCTP over

PCIe Binding

Management Component Transport Protocol (MCTP)

NVMe Management Interface

Management Controller
(BMC or Host Processor)

Management Applications (e.g., Remote Console)

Physical

Layer

Transport
Layer

Protocol

Layer

Application

Layer

Management

Applications (e.g.,

Remote Console)

Commented [AB22]: TP 001 renamed this to “NVMe
Storage Device Architectural Model”

Modify a portion of Section 1.5 (Conventions) as shown below:

Hardware shall return zero for all bits, fields, and registers that are marked as reserved. The Management
ControllerRequester should not rely on a value of zero being returned as future revisions of this specification
may contain non-zero values. The Management ControllerRequester should write all reserved bits and
registers with the value of zero. Future revisions of this specification may rely on a zero value being written
for backward compatibility.

Modify a portion of Section 1.5.1 (Definitions) as shown below:

1.5.1.a Control Primitive

A type of Request Message that may be sent while a Command Slot is processing a Command Message.
A single packet MCTP mNVMe-MI Message used to convey an NVMe-MI control request. Control
Primitives are applicable only in the out-of-band mechanism and are prohibited in the in-band tunneling
mechanism.

1.5.1.b Request Message

An MCTP mNVMe-MI Message originating from a Management ControllerRequester. A Request
Message may be a Command Message, or a Control Primitive, or another type of MCTP message.
Request Messages may be used in both the out-of-band mechanism and the in-band tunneling
mechanism.

1.5.1.c Response Message

An MCTP mNVMe-MI Message originating from a Management EndpointResponder in response to a
Request Message. Response Messages may be used in both the out-of-band mechanism and the in-
band tunneling mechanism.

1.5.1.d In-Band

Per the Management Component Transport Protocol (MCTP) Overview White Paper, in-band
management is management that operates with the support of hardware components that are critical to
and used by the operating system. The in-band communication path for NVMe-MI is via the NVMe Admin
Queue using the NVMe-MI Send and NVMe-MI Receive commands from host software to an NVMe
Controller. Refer to the NVM Express Specification and section 4.3 of this specification for additional
details on the NVMe-Send and NVMe-MI Receive commands.

1.5.1.e Out-of-Band

Per the Management Component Transport Protocol (MCTP) Overview White Paper, out-of-band
management is management that operates with hardware resources and components that are
independent of the operating system’s control. The out-of-band communication paths for NVMe-MI are
via MCTP over SMBus/I2C or MCTP over PCIe VDM from a Management Controller to a Management
Endpoint or via the access mechanism defined by the IPMI Platform Management FRU Information
Storage Definition specification for accessing a FRU Information Device from a Management Controller
over SMBus/I2C.

1.5.1.f NVMe-MI Message

A type of MCTP Message that is defined by this specification in sections 3.1 and 4.1. See the MCTP IDs
and Codes specification and the NVMe Management Messages over MCTP Binding Specification for
more details on this type of MCTP Message (note that NVMe-MI Messages are referred to as NVM
Express Management Messages over MCTP in these specifications).

7

1.5.1.g Requester

The entity that sends Request Messages and receives Response Messages. For the out -of-band
mechanism, the Requester is a Management Controller. For the in-band mechanism, the Requester is
host software.

1.5.1.h Responder

The entity that receives Request Messages and sends back Response Messages. For the out-of-band
mechanism, the Responder is a Management Endpoint. For the in-band mechanism, the Responder is
an NVMe Controller.

1.5.1.i NVMe Processing

NVMe command processing as defined by the NVM Express specification. The term NVMe Processing is
used to distinguish command processing as defined by the NVM Express specification from the
Command Message processing defined by this specification (refer to 1.5.1.j).

1.5.1.j Process

This is the state when a Command Message is processed. Processing of a Command Message consists
of checking for errors with the Command Message and performing the actions specified by the Command
Message. This state is applicable in both the out-of-band mechanism and the in-band tunneling
mechanism. Refer to section 4.2 for additional details on the Process state in the out-of-band
mechanism. Refer to section 4.3 for additional details on the Process state in the in-band tunneling
mechanism.

This specification uses the terms process/processing/processed to refer to actions performed in the
Process state. These terms are distinct from the NVMe Processing term used to describe NVMe
command processing as defined by the NVM Express specification (refer to 1.5.1.i).

Modify a portion of Section 1.7 (References) as shown below:

MCTP IDs and Codes (DSP0239), version 1.3.0. Available from http://dmtf.org.

MCTP Overview White Paper (DSP2016), version 1.0.0. Available from http://dmtf.org.

MCTP PCIe VDM Transport Binding Specification (DSP0238), version 1.0.2. Available from
http://www.dmtf.org.

Modify Section 2.1 (PCI Express) as shown below:

PCI Express is used as the physical layer in both the out-of-band mechanism and the in-band tunneling
mechanism in NVMe-MI.

For the out-of-band mechanism, Aa PCIe port in an NVMe Storage Device subsystem may implement a
Management Endpoint. If the PCIe port implements a Management Endpoint, the PCIe port shall support
MCTP over PCIe Vendor Defined Messages (VDMs) as specified by the Management Component
Transport Protocol (MCTP) PCIe VDM Transport Binding Specification.

For the in-band tunneling mechanism, host software issues NVMe Admin commands (NVMe-MI Send and
NVMe-MI Receive) to the NVMe Admin Queue over PCI Express. Refer to the NVM Express Specification
and section 4.3 of this specification for additional details on the NVMe-MI Send and NVMe-MI Receive
commands.

Modify a portion of Section 2.2 (SMBus/I2C) as shown below:

http://dmtf.org/
http://dmtf.org/
http://www.dmtf.org/

The SMBus/I2C physical layer is only applicable in the out-of-band mechanism. If the NVMe Storage
Device Subsystem implements an SMBus/I2C interface and associated with that SMBus/I2C interface is a
Management Endpoint, then the interface shall support MCTP over SMBus/I2C as specified by the
Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification.

Modify a portion of Section 3.0 (Message Transport) as shown below:
NVMe-MI utilizes MCTP as a reliable in-order message transport between a Management Controller and
a Management Endpoint.
This section summarizes the NVMe-MI MCTP packet and message format. A Management Endpoint
compliant to this specification shall implement all required behaviors detailed in the Management
Component Transport Protocol (MCTP) Base Specification and corresponding transport binding
specification in addition to the requirements outlined in this specification (e.g., the Message Integrity
Check algorithm).
NVMe-MI is supported on multiple message transports. The message format is the same for the out-of-
band mechanism and the in-band tunneling mechanism and is described in section 3.1. The out-of-band
message transport is described in section 3.2. The in-band tunneling message transport is described in
section 3.3.

Move section 3.2 (MCTP Messages) and all subsections to Section 3.1

Modify a portion of the old Section 3.2 (MCTP Messages) as shown below:

3.1 MCTPNVMe-MI Messages

NVMe-MI Messages, which are a type of MCTP message, are used in both the out-of-band mechanism
and the in-band tunneling mechanism. The format of an NVMe-MI Message is shown in Error! Reference
source not found.Figure 11.

In the out-of-band mechanism, aAn MCTP mNVMe-MI Message consists of the payload of one or more
MCTP packets. The maximum sized NVMe-MI Mmessage is 4224 bytes (4K + 128). Refer to the NVMe
Management Messages over MCTP Binding Specification. NVMe-MI Messages with lengths greater than
4224 are considered invalid NVMe-MI mMessages. The format of an NVMe-MI Message is shown in Error! R
eference source not found.Figure 11. See section 4.2 for details on how NVMe-MI Messages are used
in the out-of-band mechanism.

In the in-band tunneling mechanism, NVMe-MI Messages do not consist of MCTP packets and there is no
defined maximum sized NVMe-MI Message. See section 4.3 for details on how NVMe-MI Messages are
used in the in-band tunneling mechanism.

Rename Figure 10 as shown below:

Figure 10: NVMe-MI MCTP Message

Modify old Section 3.2.1 (Message Fields) as follows:

The format of an NVMe-MI mMessage consists of a Message Header in the first Dword, followed by the
Message Data., and If the Integrity Check (IC) field is set to ‘1’ then the NVMe-MI Message ends with the
Message Integrity Check Dword as shown in Figure 10.

The Message Header contains a Message Type (MT) field and an Integrity Check (IC) field that are defined
by the MCTP Base Specification. The Message Type field specifies the type of payload contained in the
message body and is required to be set to 4h in all messages associated with NVMe-MI Messages (refer
to the MCTP IDs and Codes specification). The Integrity Check (IC) field indicates whether the NVMe-MI
mMessage is covered protected by an overall MCTP Message Integrity Check. All NVMe-MI mMessages
in the out-of-band mechanism are protected by a 32-bit CRC computed over the mMessage bBody
contents. The IC field shall be set to ‘1’ in all NVMe-MI MCTP messages in the out-of-band mechanism.

Commented [AB23]: Figure 9 after sections are
moved.

Commented [AB24]: Figure 9 after sections are
moved.

Commented [AB25]: Figure 10 after the sections are
moved.

9

The Integrity Check (IC) field shall be cleared to ‘0’zero in all NVMe-MI Messages in the in-band tunneling
mechanism.

The Request or Response (ROR) bit in the Message Header specifies whether the NVMe-MI MCTP
mMessage is associated with a Request Message or a Response Message. The NVMe-MI Message Type
(NMIMT) field specifies whether the Request Message is a Control Primitive or a specific type of Command
Message (refer to Figure 14). Finally the Command Slot Identifier (CSI) field specifies the Command Slot
with which the NVMe-MI mMessage is associated in the out-of-band mechanism. Refer to section 4 for
additional information about Command Slots.

Modify Figure 11: NVMe-MI MCTP Message Fields as follows:

Commented [BA6]: Still Figure 14 after the sections
are moved.

Commented [AB27]: Section 4.2 after the sections are
moved.

Figure 11: NVMe-MI MCTP Message Fields

Byte Description

0

MCTP Data (MCTPD): This field contains the Message Type and Integrity Check fields as defined by
the MCTP Base Specification.

Bits Description

7

Integrity Check (IC): This field is defined by the MCTP Base Specification and indicates
whether the MCTP message is covered by an overall MCTP Message Integrity Check.
All NVMe-MI mMessages in the out-of-band mechanism are protected by a CRC and thus
this bit shall be set to ‘1’ in all out-of-band NVMe-MI mMessages.

All NVMe-MI Messages in the in-band tunneling mechanism are not protected by a CRC
and thus this bit shall be cleareMd to ‘0’ in all in-band NVMe-MI Messages.

6:0
Message Type (MT): This field is defined by the MCTP Base Specification for the
message type. This field shall be set to 4h in all NVMe-MI mMessages. Refer to MCTP IDs
and Codes .

1

NVMe-MI Message Parameters (NMP): This field contains parameters applicable to the NVMe-MI
Message.

Bits Description

7
Request or Response (ROR): This field indicates whether the message is a Request
Message or Response Message. This field is cleared to ‘0’ for Request Messages. This
field is set to ‘1’ for Response Messages.

6:3

NVMe-MI Message Type (NMIMT): This field specifies the NVMe-MI Message Type.
Refer to the sections referenced in the table below for details about each NVMe-MI
Message Type and whether they apply to the out-of-band mechanism, the in-band
tunneling mechanism, or both.

Value Description

0h Control Primitive – refer to section 4.4

1h NVMe-MI Command – refer to section 5

2h NVMe Admin Command – refer to section 6

3h Reserved

4h PCIe Command – refer to section 7

5h – Fh Reserved

2:1 Reserved

0

Command Slot Identifier (CSI): This field indicates the Command Slot with which the
NVMe-MI Mmessage is associated. For Request Messages this field indicates the
Command Slot with which the Request Message is associated. For Response Messages,
this field indicates the Command Slot associated with the Request Message with which the
Response Message is associated. This field is only applicable to NVMe-MI Messages in
the out-of-band mechanism. This field is unused and shall be set to 0h for NVMe-MI
Messages in the in-band tunneling mechanism.

Value Description

0h Command Slot 0

1h Command Slot 1

3:2 Reserved

x-1:4
Message Data (DATA): This field contains the NVMe-MI mMessage payload. The format of this field
depends on the NVMe-MI Message Type.

x+3:x

Message Integrity Check (MIC): If the Integrety Check (IC) field is set ‘1’, then Tthis field contains a
CRC computed over the contents of the NVMe-MI mMessage. Refer to section 3.2.1.1.

If the Integrety Check (IC) field is cleared to ‘0’, then this field is not included in the NVMe-MI Message.

Modify a portion of the old Section 3.2.1.1 (Message Integrity Check) as shown below:

If the Integrity Check (IC) field is set to ‘1’, Tthen the Message Integrity Check field contains a 32-bit CRC
computed over the contents of the NVMe-MI MCTP message.

Modify a portion of the old Section 3.2.1.1 (Message Integrity Check) as shown below:

Commented [BA8]: Figure 9 after the section are
moved.

Commented [AB29]: Section 4.2.1 after sections are
moved.

Commented [AB210]: Section 3.1.1.1 after sections
are moved.

11

Upon receipt of an NVMe-MI mMessage, the Message Integrity Check may be validated as follows:

Modify a portion of the old Section 3.2.1.1 (Message Integrity Check) as shown below:
See Section 4.4.5 for special requirements on how to construct the NVMe-MI Response Message when
the Management Controller issues a Replay of a Response Message with a non-zero Response Replay
Offset.

Create a new Section 3.2 (Out-of-Band Message Transport):

3.2 Out-of-Band Message Transport

The out-of-band mechanism in NVMe-MI utilizes MCTP as a reliable in-order message transport between
a Management Controller and a Management Endpoint.

This section summarizes the NVMe-MI MCTP packet format. A Management Endpoint compliant to this
specification shall implement all required behaviors detailed in the Management Component Transport
Protocol (MCTP) Base Specification and corresponding transport binding specification in addition to the
requirements outlined in this specification (e.g., the Message Integrity Check algorithm).

Move old Section 3.1 (MCTP Packet) to be under new section 3.2 (Out-of-Band Message Transport)
with the following modifications:

3.13.2.1 MCTP Packet

In MCTP, the smallest unit of data transfer is the MCTP packet. One or more packets are combined to
create an MCTP message. In NVMe-MI, the MCTP messages are referred to as NVMe-MI Messages
(refer to section 1.5.1.f). Refer to section 3.2.2 for details on how MCTP packets are assembled into
NVMe-MI Messages. A packet always contains at least 1 byte of payload but the total length shall never
exceed the negotiated MCTP Transmission Unit Size. The format of an MCTP packet is shown in Figure
8.

Move old Section 3.2.2 (Packet Assembly into Messages) to be under new section 3.2.1 (MCTP
Packet) with the following modifications:

3.2.23.2.1.1 Packet Assembly into Messages

An NVMe-MI Message may be split into multiple MCTP Packet Payloads and sent as a series of packets.
An example NVMe-MI Mmessage whose contents are split across four MCTP packets is shown in Figure
13. Refer to the MCTP Base Specification for packetization and message assembly rules.

Commented [AB211]: Section 4.2.1.5 after section are
moved.

Commented [BA12]: Packet Assembly into Messages
is section 3.2.1.1 after sections are moved

Commented [BA13]: Figure 11 after sections are
moved

Commented [BA14]: Still Figure 13 after sections are
moved

Figure 13: NVMe-MI MCTP Message Spanning Multiple MCTP Packets

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

1st MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

2nd MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

3rd MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

4th MCTP Packet of Message

NVMe-MI MCTP Message

Message Integrity Check

Message Header

In addition to the requirements outlined in the MCTP Base Specification and transport binding
specifications, the NVMe-MI Specification has the following additional requirements:

• With the exception of the last packet in a message, the MCTP Transmission Unit size of all packets
in a given message shall be equal to the negotiated MCTP Transmission Unit Size.

• The MCTP Transmission Unit size of the last packet in a Request Message or Response Message
(i.e., the one with the EOM bit set in the MCTP header) shall be the smallest size needed to transfer
the MCTP Packet Payload for that Packet with no additional padding beyond any padding required
by the physical medium-specific trailer.

Once a complete NVMe-MI MCTP message has been assembled, the Message Integrity Check is verified.
If the Message Integrity Check passes, then the NVMe-MI mMessage is processed. If the Message Integrity
Check fails, then the NVMe-MI mMessage is discarded. Refer to 4.3.

Commented [BA15]: Still Figure 13 after sections are
moved

Commented [BA16]: Section 4.2 after sections are
moved.

13

Indent old Section 3.3 (Error Handling) to be under new section 3.2 (Out-of-Band Message Transport)
and rename section to Out-of-Band Error Handling:

3.33.2.2 Out-of-Band Error Handling

Add the following new section after old Section 3.3 (Error Handling):

3.3 In-Band Tunneling Message Transport

The in-band tunneling mechanism in NVMe-MI utilizes the NVMe Admin commands NVMe-MI Send and
NVMe-MI Receive as a message transport. Refer to the NVM Express Specification and section 4.3 of
this specification for additional details on the NVMe-Send and NVMe-MI Receive commands.

Modify Section 4 (Message Processing Model) as shown below:

4 Message Servicing Processing Model

NVMe-MI utilizes a request and response processing model. A Management Controller sends a Request
Message to a Management Endpoint, the Management Endpoint processes the Request Message, and
when processing has completed, sends a Response Message back the Management Controller. Under no
circumstances does a Management Endpoint generate an unsolicited Response Message (i.e., a Response
Message that does not correspond to a previously received Request Message).
NVMe-MI Messages are used for communication in both the out-of-band and in-band tunneling message
servicing model and are described in section 4.1. NVMe-MI supports multiple message servicing models.
The out-of-band message servicing model is described in section 4.2. The in-band tunneling message
servicing model is described in section 4.3.

4.1 NVMe-MI MCTP Messages
Figure 14 illustrates the taxonomy of NVMe-MI MCTP messages. The two main categories of NVMe-MI
Messages are Request Messages and Response Messages. Request Messages are sent by a
Management Controller to a Management Endpoint when using the out-of-band mechanism. Request
Messages are sent by host software to an NVMe Controller when using the in-band tunneling
mechanism. The entity sending the Request Message is collectively referred to as the Requester and the
entity receiving the Request Message is collectively referred to as the Responder. After receiving a
Request Message, the Responder will process the Request Message. When processing is complete, the
Responder sends a Response Message back to the Requester.

A Request Message may be classified as a cCommand Message or a Control Primitive. Commands
Messages specify an operation to be performed by the Management EndpointResponder and may be
further classified as an NVMe-MI cCommand, an NVMe Admin cCommand, or a PCIe cCommand. Control
Primitives are used in the out-of-band mechanism to affect the servicingprocessing of a previously issued
Command Message or get the state of a Command Slot and Management Endpoint and are described in
(refer to Section 4.4).

Unlike other NVMe-MI MCTP messages that may span multiple MCTP packets, messages containing a
Control Primitive shall consist of exactly one MCTP packet.

A Response Message may be classified as a sSuccess rResponse or an eError rResponse.

Modify Figure 14 (NVMe-MI MCTP Message Taxonomy) as shown below:

Figure 14: NVMe-MI MCTP Message Taxonomy

Commented [BA17]: Section 4.2.1 after section are
moved

Control
Primitive

Command Message

NVMe-MI
Command

NVMe Admin
Command

PCIe
Command

NVMe-MI Message

Response Message

Success
Response

Request Message

Error
Response

Control
Primitive

Command Message

NVMe-MI
Command

NVMe
Command

PCIe
Command

NVMe-MI MCTP Message

Response Message

Success
Response

Request Message

Error
Response

Indent old Section 4.1 (Request Messages) to be under new section 4.1 (NVMe-MI Messages) and
modify as shown below:

4.14.1.1 Request Messages

Request Messages are NVMe-MI mMessages that are generated by a RequesterManagement Controller
to send to a ResponderManagement Endpoint.
Request Messages specify an action to be performed by the ResponderManagement Endpoint. Request
Messages are either Control Primitives (refer to 4.4) or Command Messages. The format of the
mMessage bBody for a Command Message is command set specific and is specified by the NMIMT field
in the mMessage hHeader.
The NVMe Management Interface supports three command sets:

• The Management Interface cCommand sSet is described in chapter 5.

• The NVM Express Admin cCommand sSet is described in chapter 6.

• The PCIe cCommand sSet is described in chapter 7.

Commented [AB218]: Section 4.2.1 after section are
moved

15

Indent old Section 4.2 (Response Messages) to be under new section 4.1 (NVMe-MI Messages) and
modify as shown below:

4.14.1.2 Response Messages
Response Messages are NVMe-MI mMessages that are generated when a ResponderManagement
Endpoint completes processing of a previously issued Request Message.
The format of a Response Message is shown in Figure and Figure. The first Dword contains the NVMe-MI
mMessage hHeader. The Status field encodes the status associated with the Response Message. This is
followed by the Response Body whose format is NVMe-MI Message Type and rResponse Message
sStatus specific. Finally, if the Integrity Check (IC) field is set to ‘1’ then the Response Message ends with
the NVMe-MI Message Integrity Check field.

Figure 15: Response Message Format

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Message Integrity Check

Message TypeI
C

Response Body

R CSINVMe-MI
Msg Type

R
O
R

Reserved

Status

Byte 0<

<

< Byte N

Bytes
8 to N-1

Byte 4<

In the out-of-band mechanism, Tthe CSI field in the NVMe-MI Message Header specifies the Command
Slot of the Request Message with which the Response Message is associated. The NVMe-MI Message
Type (Msg Type) field contains the value from the same field in the corresponding Request Message.

In the in-band tunneling mechanism, the CSI field in the Message Header is reserved and shall be set to
a value of ‘1’.

Figure 16: Response Message Fields

Byte Description

3:0 NVMe-MI Message Header (NMH): Refer to Section 3.2.

4
Status (STATUS): This field indicates the status associated with the Response Message.
Response Message Status values are summarized in Figure 17.

M-1:5
Response Body (RESPB): This field contains response specific fields whose format is
dependent on the NVMe-MI Message Type and Status field.

M+3:M Message Integrity Check: Refer to Section 3.2.

Response Message Status values are summarized in Figure 17. A Response Message Status value of
Success indicates that the corresponding Request Message completed successfully and that the
Response Message is a sSuccess rResponse. The format of the rResponse bBody for a sSuccess
rResponse is dependent on the NVMe-MI mMessage tType and is described later in this specifiation.

A Response Message Status value other thant Success indicates that an error occurred during
servicingprocessing of the corresponding commandRequest Message and that the rResponse Message

Commented [AB219]: Section 3.1 after sections are
moved.

Commented [AB220]: Section 3.1 after sections are
moved.

is an eError rResponse. The format of the rResponse bBody is dependent on the Response Message
Status value as shown in Figure 17. If multiple errors are present, a Management EndpointResponder
may choose which error status to report.

Figure 17: Response Message Status Values

Value Description Error Reponse Format

00h Success: The command completed successfully. Refer to 4.2.1

01h

More Processing Required: The cCommand Message is
in progress and requires more time to complete
processing. When this Response Message Status value is
used in a Response Message, a subsequent Response
mMessage contains the result of the Command Message.
This Response Message Status Value shall not be sent
more than once per Request Message.

Refer to 4.2.1

02h
Internal Error: The commandRequest Message could not
be executed due to a vendor specific internal error.

Refer to 4.2.1

03h
Invalid Command Opcode: The associated command
opcode field is not valid. Invalid opcodes include reserved
and optional opcodes that are not implemented.

Refer to 4.2.2

04h

Invalid Parameter: Invalid command parameter field
value. Request Messages received with reserved values
in defined fields shall be completed with an Invalid
Parameter Error Response Message. Request Messages
received with reserved or unimplemented values in
defined fields shall be completed with an Invalid
Parameter Error Response Message. Other error
conditions that result in Invalid Parameter Error Response
Message are noted elsewhere in this specification.

Refer to 4.2.1

05h

Invalid Command Size: The Command Message bBody
of the Command Message was larger or smaller than that
expected by the command due to a reason other than too
much or too little Requestinput dData (e.g., the
cCommand Message did not contain all the required
parameters or no inputRequest dData was expected but
the command message bodyRequest Data is larger than
that needed to contain the required parameters).

The expected command mMessage bBody size is
determined by the commandNVMe-MI Message Type and
opcode assuming no other errors are detected (e.g.,
Invalid Command Opcode or Invalid Parameter).

Refer to 4.2.1

06h
Invalid Command Input Data Size: The Command
Message requires input dRequest Data and contains too
much or too little input dRequest Data.

Refer to 4.2.1

07h
Access Denied: A command Request Message was
prohibited from being executed processed due to a vendor
specific protection mechanism.

Refer to 4.2.1

08h – 1Fh Reserved

20h
VPD Updates Exceeded: More updates to the VPD are
attempted than allowed.

Refer to 4.2.1

21h
PCIe Inaccessible: The PCIe functionality is not available
at this time.

Refer to 4.2.1

22h – DFh Reserved

E0h – FFh Vendor Specific Vendor Specific

Commented [AB221]: Section 4.1.2.1 after the
sections are moved.

Commented [AB222]: Section 4.1.2.1 after the
sections are moved.

Commented [AB223]: Section 4.1.2.2 after the
sections are moved.

Commented [AB224]: Section 4.1.2.2 after the
sections are moved.

Commented [AB225]: Section 4.1.2.1 after the
sections are moved.

Commented [AB226]: Section 4.1.2.1 after the
sections are moved.

Commented [AB227]: Section 4.1.2.1 after the
sections are moved.

Commented [AB228]: Section 4.1.2.1 after the
sections are moved.

Commented [AB229]: Section 4.1.2.1 after the
sections are moved.

Commented [AB230]: Section 4.1.2.1 after the
sections are moved.

17

Indent old Section 4.2.1 (Generic Error Response) to be under new section 4.1 (NVMe-MI
Messages) and modify as shown below:

4.2.14.1.2.1 Generic Error Response

A gGeneric eError rResponse is generated for errors in which no additional information is provided
beyond the Response Message Status. Bytes 5 to 7 are reserved. The format of a gGeneric eError
rResponse is shown in Figure 18.

Indent old Section 4.2.1 (Invalid Parameter Error Response) to be under new section 4.1 (NVMe-MI
Messages) and modify as shown below:

4.2.14.1.2.2 Invalid Parameter Error Response

An iInvalid pParameter eError rResponse is generated for error responses where the Status field is set to
Invalid Parameter. The format of an iInvalid pParameter eError rResponse is shown in Figure 19 and the
response specific fields are summarized in Figure 20.

Modify old Section 4.3 (Command Processing Model) as shown below:

4.34.2 Out-of-Band Message ServicingCommand Processing Model

The out-of-band mechanism in NVMe-MI utilizes a request and response servicing model. A Management
Controller sends a Request Message to a Management Endpoint, the Management Endpoint processes
the Request Message, and when processing has completed, sends a Response Message back the
Management Controller. Under no circumstances does a Management Endpoint generate an unsolicited
Response Message (i.e., a Response Message that does not correspond to a previously received
Request Message).

Unlike other NVMe-MI Messages that may span multiple MCTP packets, NVMe-MI Messages containing
a Control Primitive shall consist of exactly one MCTP packet.

NVMe-MI utilizes Command Slots for cCommand Message servicing. A Management Controller should
not send a new Command Message to a Command Slot until the Response Message for the previously
issued cCommand Message to that Command Slot has been received. Each Management Endpoint
contains 2two Command Slots that each include state information and a Pause flag (refer to 4.4.4).

A Management Controller sends a Command Message to a Management Endpoint that targets a specific
Command Slot in the Management Endpoint. The Management Endpoint assembles MCTP packets into
Command Messages targeting a Command Slot. The Command Slot remains allocated to the Command
Message until servicing of the Command Message has completed and command servicing transitions
back to the Idle state.

A Command Message is the only type of multi-packet MCTP NVMe-MI mMessage that may be received
by a Management Endpoint. The maximum number of Command Messages in flight to a Management
Endpoint is equal to the number of Command Slots. The operation of each Command Slot is
independent, allowing a Management Controller to have 2two independent streams of Command
Messages to a Management Endpoint. The Command Message associated with each Command Slot are
servicedprocessed in parallel. If the NVM Subsystem implements multiple Management Endpoints, then
command servicing of each Management Endpoint occurs in parallel. A NVM Subsystem that implements
N Management Endpoints may have up to 2N Command Messages serviced in parallel.

The Command Servicing State Diagram in Figure 21 is used to describe functional requirements and
does not mandate an implementation.

Commented [AB231]: Section 4.2.1.4 after sections
are moved.

Figure 21: Command Servicing State Diagram

Idle

ReceiveTransmit

Process

Start of
Command Message

Complete
Command Message

Received

Abort or
Error

Response
Required

or
Resume

Response Message
Transmitted

or
Abort

Abort

More
Processing
Required

Sent

1. Idle: This is the default state of the command servicing state machine (e.g., following a reset).
Command servicing transitions from Idle to the Receive state when the first MCTP packet of a
MCTP NVMe-MI cCommand mMessage is received (i.e., an MCTP packet with the SOM bit in the
MCTP packet header set to ‘1’ and the Message Type set to 4h).

2. Receive: The state when the first packet of a Command Message has been received and the
message is being assembled and/or validated. Command servicing transitions from Receive to the
Idle state when an Abort Control Primitive is received, an error is detected in message assembly
(refer to 3.2.2), or the Message Integrity Check fails (refer to 3.2.1.1). Command servicing
transitions from Receive state to the Process state when a Command Message is assembled and
the message integrity check is successful.

3. Process: The state when a Command Message is processed. Processing of a cCommand
Message consists of checking for errors with the Command Message and performing the actions
specified by the cCommand Message or aborting the cCommand Message. Command servicing
transitions from Process to the Transmit state when a rResponse Message is required to be sent
(i.e., the Pause Flag is cleared to ‘0’ and either of the following are true: all processing of the
cCommand Message has completed or command processing is expected to exceed the
corresponding transport binding specification response timeout). Command servicing transitions
from the Process state to the Idle state due to an Abort Control Primitive (refer to 4.4.3).

4. Transmit: The state in which a Response Message for the Command Message is transmitted to
the Management Controller. Command servicing transitions from the Transmit to the Idle state once
the entire NVMe-MI mMessage associated with the response to the cCommand Message has been
transmitted on the physical medium or due to an Abort Control Primitive (refer to 4.4.3). If command
servicing did not complete in the Process state, then the Management Endpoint transmits a
rResponse Message with status More Processing Required and the command servicing transitions
back to the Process state.

The behavior of receiving two or more overlapping Command Messages to the same Command Slot is
undefined. If this results in the Management Endpoint discarding a Command Message, then this is
considered receiving a Command Message to a non-Idle Command Slot (CMNICS). Refer to section
4.4.4.

Commented [AB232]: Section 3.2.1.1 after sections
are moved.

Commented [AB233]: Section 3.1.1.1 after sections
are moved.

Commented [AB234]: Section 4.2.1.3 after sections
are moved.

Commented [AB235]: Section 4.2.1.3 after sections
are moved.

Commented [AB236]: Section 4.2.1.4 after sections
are moved.

19

Indent old Section 4.4 (Control Primitives) to be under new section 4.2 (Out-of-Band Message
Servicing Model) and modify as shown below:

4.44.2.1 Control Primitives

Control Primitives are Request Messages sent from a Management Controller to a Management Endpoint
to affect the servicing of a previously issued Command Message or get the state of a Command Slot and
Management Endpointcommand processing flow and are applicable only in the out-of-band mechanism
and are prohibited in the in-band tunneling mechanism. Control Primitives may target a Command Slot.
Unlike Command Messages, Control Primitives may be sent while the Command Slot is any state and are
processed immediately by the Management Endpoint. Unless otherwise indicated, Control Primitives do
not change the state of the Command Slot.

The format of a Control Primitive is shown in Figure 22 and the fields are described in Figure 23.

Figure 22: Control Primitive Request Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Control Primitive Opcode
(CPO)Control Primitive Specific Parameter (CPSP)

Byte 0<

Byte 4<

Byte 8<

Tag (TAG)

Figure 23: Control Primitive Request Message Fields

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to Section 3.2.

04
Control Primitive Opcode (CPO): This field specifies the opcode of the Control Primitive to be
executed. Refer to Figure 24.

05
Tag (TAG): This field contains an opaque value that is sent from the Management Controller in the
Control Primitive Request Message and returned by the Management Endpoint in to the associated
rResponse Message. A Management Controller may use any value in this field.

07:06
Control Primitive Specific Parameter (CPSP): This field is used to to pass Control Primitive specific
parameter information.

Figure 24: Opcodes for Control Primitives

Opcode O/M1 Command

00h M Pause

01h M Resume

02h M Abort

03h M Get State

04h M Replay

05h - EFh Reserved

F0h - FFh O Vendor Specific

NOTES:

1. Optional or Mandatory; O – optional and M - mandatory

Commented [AB237]: Section 3.1 after sections are
moved.

The format of a sSuccess rResponse associated with a Control Primitive is shown in Figure 25 and the
fields are described in Figure 26.

Figure 25: Control Primitive Success Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

StatusControl Primitive Specific Response (CPSR) Tag (TAG)

Byte 0<

Byte 4<

Byte 8<

Figure 26: Control Primitive Success Response Message Fields

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to Section 3.2.

04 Status (STATUS): Refer to Section 4.2.

05
Tag (TAG): This field contains an opaque value that is passed by the Management Endpoint from the
Control Primitive to the associated Response Message. The Response Message contains the same
value in this field as the corresponsing Request Message.

07:06
Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific
status.

A Management Endpoint transmits a Response Message to the Management Controller when the actions
associated with that Control Primitive have completed.

Unlike Command Messages, a Management Controller may issue a Control Primitive to a Command Slot
without waiting for a response for previously issued Control Primitives to that Command Slot. If multiple
Control Primitives are sent without waiting for responses from the Management Endpoint, only the actions
and response associated with the last Control Primitive are guaranteed (i.e., the actions associated with
previously issued but unacknowledged Control Primitives may or may not be performed and the Response
Messages for previously issued but unacknowledged Control Primitives may or may not be transmi tted).
Receipt of a Control Primitive never corrupts a previous Control Primitive associated with the Command
Slot. The Response Message is either entirely transmitted or discarded.

The TAG field is an opaque value copied from the Control Primitive Request Message into the Response
Message. By using unique TAG values it is possible for the Management Controller to link Response
Messages with Request Messages.

4.4.14.2.1.1 Pause

The Pause Control Primitive is used to suspend response transmission and suspend the timeout waiting
for packet for both Command Slots in a Management Endpoint. The CSI field in a Pause Control Primitive
is not used and shall be cleared to ‘0’.

Associated with each Command Slot is a Pause Flag that determines whether the slot is ‘paused.’ The
Pause Flag status is included with a success Response Message, and may also be read using the Get
State primitive.

Commented [AB238]: Section 3.1 after sections are
moved.

NOTE!!!! Most of section 3.2 got moved to 3.1… but
3.2.2 got moved to 3.2.1.1. Need to review all
references to section 3.2 to see if they need to be
changed to 3.1 or 3.2.1.1. Most should go to 3.1.

Commented [AB239]: Section 4.1.2 after sections are
moved.

21

The CPSP field for the Pause primitive is reserved.

The format of the CPSR field in the Control Primitive success Response Message is shown in Figure 27.

Figure 27: Pause Control Primitive Success Response Message Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive
specific status.

Bits Description

15:02 Reserved

01

Pause Flag Status Slot 1 (PFSS1): This field indicates whether or not
Command Slot 1 is paused after completing the Pause primitive. A ‘1’ in this
field indicates the Command Slot is paused. A ‘0’ in this field indicates the
Command Slot is not paused.

00

Pause Flag Status Slot 0 (PFSS0): This field indicates whether or not
Command Slot 0 is paused after completing the Pause primitive. A ‘1’ in this
field indicates the Command Slot is paused. A ‘0’ in this field indicates the
Command Slot is not paused.

The result of a Pause Control Primitive on a Command Slot is dependent on the state of the Command Slot
when the Pause Control Primitive is received, as described below:

Idle: The Pause primitive has no effect, and the Pause Flag is not changed (i.e., remains cleared to
‘0’). Refer to 4.4.4.

Receive: The Pause primitive sets the Pause Flag to ‘1’ (refer to 4.4.4) and alerts the Management
Endpoint that remaining MCTP packets associated with the command may be delayed. Further packets
sent to this Command Slot while the Pause Flag is set are received normally.

Process: The Pause primitive sets the Pause Flag to ‘1’ (refer to 4.4.4) causing the Command Slot to
remain in the Process state until a Resume Control Primitive is received. Pause has no effect on the
command processing in the Command Slot. Though command processing may complete, the
Command Slot shall not transition to the Transmit state.

Transmit: The Pause primitive sets the Pause Flag to ‘1’ (refer to 4.4.4) suspending transmission of
MCTP response packets associated on a packet boundary with the Command in the Command Slot.

The Management Endpoint shall transmit a Response Message with success status after receiving the
Pause primitive. It is not an error to issue a Pause Control Primitive when a Command Slot is already
paused.

While the Pause Flag is set, the Management Endpoint disables the t imeout waiting for packet timer and
does not transmit responses to commands. The timeout waiting for a packet is the lesser of 100ms or the
time defined in the appropriate MCTP transport binding specification. The Management Controller should
not send commands while a Management Endpoint is paused.

4.4.14.2.1.2 Resume

The Resume Control Primitive is used to resume from a paused state. This is the complement to the Pause
Control Primitive.

Like the Pause Control Primitive, the Resume Control Primitive affects both slots and the CSI field in a
Resume Control Primitive shall be cleared to ‘0’. If a Command Slot was not paused before receiving the
Resume primitive, the Resume primitive completes successfully and has no effect.

The CPSP field for the Resume primitive is reserved. The CPSR field in the Control Primitive success
Response Message is reserved.

The result of a Resume Control Primitive is based on the state of a Command Slot when the Resume
Control Primitive is received, as described below:

Commented [AB240]: Section 4.2.1.4 after sections
are moved.

Commented [AB241]: Section 4.2.1.4 after sections
are moved.

Commented [AB242]: Section 4.2.1.4 after sections
are moved.

Commented [AB243]: Section 4.2.1.4 after sections
are moved.

Idle: The Resume primitive has no effect.

Receive: The Resume primitive alerts the Management Endpoint that transmission of any remaining
MCTP packets associated with the command is resuming. The Pause Flag is cleared to ‘0’ (refer to
4.4.4).

Process: The Resume primitive allows a previously paused Command Slot to transition to the Transmit
state and starts transmitting a response after responding to the Resume primitive. The Pause Flag is
cleared to ‘0’ (refer to 4.4.4).

Transmit: The Management Endpoint resumes transmission of the response corresponding to the
command associated with that slot after responding to the Resume primitive. The Pause Flag is cleared
to ‘0’ (refer to 4.4.4).

The Management Endpoint shall transmit a Control Primitive Response Message with success status after
receiving the Resume primitive.

4.4.14.2.1.3 Abort

The Abort Control Primitive is used to re-initialize a Command Slot to the Idle state, clear the Pause Flag
associated with that Command Slot, and attempt to abort command servicingprocessing associated with
that Command Slot.

Aborting a Command Message shall have no effect on the other Command Slot of the Management
Endpoint, other Management Endpoints, or NVMe Controllers in the NVM Subsystem. Subsequent
command servicingprocessing in the Command Slot is not affected by the Abort.

A Management Controller may issue an Abort primitive to clean-up resources associated with a Command
Slot in an unknown state.

The CPSP field for the Abort primitive is reserved. The format of the CPSR field in the Control Primitive
success Response Message is shown in Figure 2.

Figure 2: Abort Control Primitive Success Response Message Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific
status.

Bits Description

15:02 Reserved

01:00

Command Processing Abort Status (CPAS): This field indicates the effect of the Abort
primitive on the processing of the Command Message associated with the Command Slot.

0h – Command aborted after processing completed or no command to abort.
1h – Command aborted before processing began
2h – Command processing partially completed.
3h – Reserved

The result of an Abort primitive is based on the state of the specified Command Slot when the Abort primitive
is received, as described below:

Idle: The Abort primitive has no effect. The Management Endpoint shall transmit a Response Message
with success status and the CPAS field cleared to 0h.

Receive: The Management Endpoint discards the contents of the Command Slot and transitions to the
Idle state. The Management Endpoint shall transmit a Response Message with success status and the
CPAS field set to 1h.

Process: The Abort primitive causes processing of the command in the Command Slot to be aborted.
- If the Abort primitive was received before command processing started, the Management Endpoint

Commented [AB244]: Section 4.2.1.4 after sections
are moved.

Commented [AB245]: Section 4.2.1.4 after sections
are moved.

Commented [AB246]: Section 4.2.1.4 after sections
are moved.

23

discards the contents of the Command Slot and transitions to the Idle state. The Management
Endpoint shall transmit a success Response Message and the CPAS field set to 1h.

- If the Abort primitive was received while the command is being processed, the Management
Endpoint discards the contents of the Command Slot and transitions to the Idle state. The
Management Endpoint attempts to abort the command.

o If the command is aborted and had no effect on the NVM Subsystem, then the Management
Endpoint shall transmit a success Response Message and the CPAS field set to 1h.

o If the Management Endpoint is not able to abort the command, then the Management
Endpoint shall transmit a success Response Message and set the CPAS field to 2h.

o If the command has completed processing (e.g., the Management Endpoint is paused),
then the Management Endpoint shall transmit a success Response Message and the
CPAS field is cleared to 0h.

Transmit: The Management Endpoint discards the contents of the Command Slot and transitions to
the Idle state. The Management Endpoint transmits a Response Message with success status and the
CPAS field cleared to 0h.

It is not an error to issue an Abort Control Primitive to a slot that is paused. The state of slot is reinitialized
clearing the Pause Flag.

4.4.14.2.1.4 Get State

The Get State Control Primitive is used to checkget the state of a Command Slot and Management
Endpoint.

The format of the CPSP field in the Control Primitive Request Message is shown in Figure 29.

Figure 29: Get State Control Primitive Request Message Fields

Byte Description

07:06

Control Primitive Specific Parameter (CPSP): This field is used to to pass Control Primitive specific
parameter information.

Bits Description

15:01 Reserved

00
Clear Error State Flags (CESF): This field specifies whether or not
to clear the error state flags when completing this command.

The Management Endpoint shall transmit a Response Message with success status after receiving the Get
State primitive. The format of the CPSR field in the Control Primitive success Response Message is shown
in Figure 30.

Figure 30: Get State Control Primitive Success Response Message Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control
Primitive specific status.

Bits
CS

Specific1
Description

15 Yes

Pause Flag (PFLG): This field indicates whether or not the
Command Slot is paused. A ‘1’ in this field indicates the
Command Slot is paused. A ‘0’ in this field indicates the
Command Slot is not paused.

While the Pause Flag is set, the Management Endpoint disables
the timeout waiting for packet timer, as defined in the MCTP
Base Specification, for the Command Slot and does not transmit
responses to Command Messages.

14 No

NVM Subsystem Reset Occurred (NSSRO): This field
indicates when an NVM Subsystem Reset occurs while main
power is applied. This field is set to ‘1’ if the last occurrence of
an NVM Subsystem Reset occurred while main power was
applied to the NVM Subsystem. This field is cleared to ‘0’
following a power cycle and following a Get State primitive with
the CESF field set to ‘1’.

13 No

Bad Packet or Other Physical Layer (BPOPL): This field is set
to ‘1’ if a packet sent to the Management Endpoint failed a
transport specific packet integrity check since the last time Get
State primitive was executed with the CESF field set to ‘1’.

12 No

Bad, Unexpected, or Expired Message Tag (BUEMT): This
field is set to ‘1’ if the Management Endpoint detected an error
of this type (refer to the MCTP Base Specification) since the last
time Get State primitive was executed with the CESF field set to
‘1’.

11 No

Out-of-Sequence Packet Sequence Number (OSPSN): This
field is set to ‘1’ if the Management Endpoint detected an error
of this type (refer to the MCTP Base Specification) since the last
time Get State primitive was executed with the CESF field set to
‘1’.

10 No

Unexpected Middle or End of Packet (UMEP): This field is set
to ‘1’ if the Management Endpoint detected an error of this type
(refer to the MCTP Base Specification) since the last time Get
State primitive was executed with the CESF field set to ‘1’.

09 No

Incorrect Transmission Unit (ITU): This field is set to ‘1’ if the
Management Endpoint detected an error of this type (refer to the
MCTP Base Specification) since the last time Get State primitive
was executed with the CESF field set to ‘1’.

08 No

Unknown Destination ID (UDSTID): This field is set to ‘1’ if the
Management Endpoint detected an error of this type (refer to the
MCTP Base Specification) since the last time Get State primitive
was executed with the CESF field set to ‘1’.

07 No

Bad Header Version (BHVS): This field is set to ‘1’ if the
Management Endpoint detected an error of this type (refer to the
MCTP Base Specification) since the last time Get State primitive
was executed with the CESF field set to ‘1’.

06 No

Unsupported Transmission Unit (UTUNT): This field is set to
‘1’ if the Management Endpoint detected an error of this type
(refer to the MCTP Base Specification) since the last time Get
State primitive was executed with the CESF field set to ‘1’.

05 No

Timeout Waiting for a Packet (WPTT): This field is set to ‘1’ if
the Management Endpoint detected an error of this type (refer
to the MCTP Base Specification) since the last time Get State
primitive was executed with the CESF field set to ‘1’.

04 No

Bad Message Integrity Check Error (BMICE): This field is set
to ‘1’ if the Management Endpoint detected an error of this type
(refer to the MCTP Base Specification) since the last time Get
State primitive was executed with the CESF field set to ‘1’.

25

03 No

Command Message to non-Idle Command Slot (CMNICS):
This field is set to ‘1’ if the Management Endpoint discarded one
or more Command Messages due to overlapping Command
Messages to a Command Slot since the last time Get State
primitive was executed with the CESF field set to ‘1’.

02 Reserved

01:00 Yes

Slot Command Servicing State (SSTA): This field indicates
the current command servicing state of the Command Slot. An
implementation may choose to indicate only the Idle and
Process states in this field. Refer to Figure 21.

Value Description

0h Idle

1h Receive

2h Process

3h Transmit

Notes:
1. Command Slot Specific. Yes in this column indicates the value of the

field within a Management Endpoint is independent per Command Slot.

4.4.14.2.1.5 Replay

The Replay Control Primitive is used to retransmit the Response Message for the last Command Message
processed in a Command Slot. The replayed Response Message forms a new MCTP Response Message
with Message Data starting from Response Replay Offset of the original Response Message and continuing
to the end of the Response Message, including the original MIC. The first packet shall have SOM set and
shall include the Message Header of the original Response Message even if the Response Replay Offset
is not zero.

Note that the Management Controller will need extensions to the MCTP Base Specification in its MCTP
layer in order to Replay a Response Message using a non-zero Response Replay Offset. No extensions
to the MCTP Base Specification are needed to Replay with Response Replay Offset equal to zero. For the
case where a Management Controller chooses to use a non-zero Response Replay Offset, the MCTP Base
Specification requires terminating message assembly for certain errors (i.e. receiving a packet with bad
packet data integrity). If a Management Controller receives a number of packets with no errors in a
Response Message and then gets an error on a packet that causes termination of message assembly, the
Management Controller will need extensions in its MCTP layer to forward the packets it received with no
errors to its NVMe-MI layer prior to terminating message assembly. The Management Controller can then
issue a Replay to get the second part of the Response Message using a non-zero Response Replay Offset.
The Management Controller’s NVMe-MI layer can then assemble the two partial Response Messages to
create the whole Response Message. The MIC can then be validated across the whole Response Message
as described in Section 3.2.1.1.

The format of the CPSP field in the Control Primitive Request Message is shown in Figure 31.

Figure 31: Replay Control Primitive Request Message Fields

Byte Description

Commented [AB247]: Section 3.1.1.1 after sections
are moved.

07:06

Control Primitive Specific Parameter (CPSP): This field is used to to pass Control Primitive
specific parameter information.

Bits Description

15:08 Reserved

07:00

Response Replay Offset (RRO): This field specifies the
starting packet number from which the Response Message
associated with the last Command Message processed in the
Command Slot should be replayed.

This is a 0’s based value. When this field is cleared to ‘0’, the
first packet of the associated Response Message is the first
packet replayed.

If this field specifies an offset that is beyond the length of the
Response Message, then processing of the Control Primitive
is aborted and the Management Endpoint transmits an Invalid
Parameter Error Response Message.

The format of the CPSR field in the Control Primitive success Response Message is shown in Figure 32.

Figure 32: Replay Control Primitive Success Response Message Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive
specific status.

Bit Description

15:01 Reserved

00

Response Replay (RR): This bit indicates if a previous
Response Message is retransmitted. This field is set to ‘1’ if
the requested Response Message is retransmitted by the
Management Endpoint. This field is cleared to ‘0’ if the
requested Response Message is not retransmitted.

The result of a Replay primitive is based on the state of the specified Command Slot when the Replay
primitive is received, as described below:

Idle: The Replay primitive requests retransmission of the completion at the offset specified by the RRO
field if such a completion is available.
- If the Replay primitive was received following an Abort primitive or a reset (refer to Error!

Reference source not found.) before any Command Messages are processed, then there is no
Response Message available to retransmit. The Management Endpoint shall transmit a Response
Message with success status with the RR field cleared to ‘0’.

- If the Replay primitive was received following the processing of one or more Command Messages,
then the Management Endpoint shall transmit a Response Message with success status with the
RR field set to ‘1’. The Management Endpoint transmits the MCTP packets associated with the
requested Response Message after the Control Primitive success response.

Receive: The Management Endpoint transmits a Response Message with success status with the RR
field cleared to ‘0’.

Process: The Replay primitive requests retransmission of the last response transmitted for the

27

command in this Command Slot.
- If a Response Message has not been transmitted for the Command Message (i.e., the slot never

entered the Transmit state for the Command Message), then the Management Endpoint transmits
a Response Message with success status and the RR field cleared to ‘0’.

- If a Response Message has been transmitted for the Command Message (i.e., a Response
Message was transmitted indicating that more processing was required), then the Management
Endpoint transmits a Response Message with success status with the RR field set to ‘1’. The
Management Endpoint retransmits the response indicating that more processing is required.

Transmit: The Management Endpoint stops transmitting response packets for the Command Slot and
then transmits a Response Message with success status with the RR field set to ‘1’. The Management
Endpoint transmits a Response Message containing the packets starting at the packet offset specified
in the Response Replay Offset field of the Replay after the Control Primitive success response. The
Command Slot remains in the Transmit state until retransmission is complete.

It is not an error to issue a Replay primitive to a Command Slot that is paused. The response is
retransmitted even if the Command Slot was paused (i.e., there is an implicit Resume primitive affecting
both Command Slots when processing the Replay primitive) at any time during the response including
before the first packet was transmitted. After successful completion of the Replay primitive, neither
Command Slot is paused.

Indent old Section 4.5 (Error Handling) to be under new section 4.2 (Out-of-Band Message
Servicing Model) and modify as shown below:

4.54.2.2 Out-of-Band Error Handling

This section describes error handling specific to the NVMe-MI out-of-band message processing model.

4.54.2.2.1 Command Timeouts

MCTP defines a maximum response time for MCTP control messages (refer to the appropriate MCTP
transport binding specification).
If a Management Endpoint determines that command processing may not complete within the lesser of
100ms or the request-to-response time specified in the appropriate MCTP transport binding specification,
the Management Endpoint shall utilize the More Processing Required response mechanism. The
Response Message from the Management Endpoint may only be delayed beyond this timeout while the
transport is busy or unavailable.
A Management Endpoint should only use the More Processing Required response for commands that are
expected to take longer than the required time (e.g., Format NVM). Implementations are strongly
discouraged from using this response while processing cCommands Messages that take less than or the
required time to complete.

4.54.2.2.2 Control Primitive Timeouts

A Management Endpoint shall attempt to respond to a Control Primitive within the lesser of 100ms or the
request-to-response time specified in the appropriate MCTP transport binding specification. The
Response Message from the Management Endpoint may only be delayed beyond this timeout while the
transport is busy or unavailable.

Add new Section 4.3 as shown below:

4.3 In-Band Tunneling Message Servicing Model

The in-band tunneling mechanism in NVMe-MI utilizes two NVMe Admin commands (NVMe-MI Send and
NVMe-MI Receive). NVMe-MI Send is used to tunnel an NVMe-MI Command from host software to an
NVMe Controller that transfers data from the host to the NVMe Controller (similar to a write operation).

NVMe-MI Receive is used to tunnel an NVMe-MI Command from a host to an NVMe Controller that
transfers data from the NVMe Controller to the host (similar to a read operation).

Refer to the NVM Express Specification for additional details on the NVMe-Send and NVMe-MI Receive
commands. Additional details on NVMe-MI Send are in section 4.3.1 and additional details on NVMe-MI
Receive are in section 4.3.2.

4.3.1 NVMe-MI Send Command

The NVMe-MI Send command is an NVMe Admin Command as defined by this specification and the NVM
Express Specification. It is used to tunnel an NVMe-MI Command in-band from host software to an NVMe
Controller that transfers data from a host to an NVMe Controller (similar to a write operation). The data
being transferred is in one or more of the following locations: Request Data, NVMe Management Dword 0,
NVMe Management Dword 1.

The mapping of how NVMe-MI Commands are tunneled inside of NVMe-MI Send commands is described
in section 4.3.1.1. The NVMe-MI Send command servicing model is described in section 4.3.1.2.

4.3.1.1 NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping

In order to tunnel NVMe-MI Commands in-band via NVMe-MI Send, NVMe-MI Request Messages are
mapped onto NVMe Submission Queue Entries (SQE) as shown pictorially in Figure 4.3.1.1_1 and in table
form in Figure 4.3.1.1_2. NVMe-MI Response Messages are mapped on to NVMe Completion Queue
Entries (CQE) as shown pictorially in Figure 4.3.1.1_3 and in table form in Figure 4.3.1.1_4. Refer to the
NVM Express specification for details on NVMe Submission Queue Entries and NVMe Completion Queue
Entries.

29

Figure 4.3.1.1_1 NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping
Diagram

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

< Byte 0Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode < Byte 4

< Byte 8NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

< Byte 12

Bytes
16 to N - 1

< Byte N

Reserved

Command Dword 0
(CDW0)

Namespace Identifier
(NSID)

Reserved

Metadata Pointer (MPTR)

Data Pointer (DPTR)

Command Dword 10
(CDW10)

Command Dword 11
(CDW11)

Command Dword 12
(CDW12)

Command Dword 13
(CDW13)

Command Dword 14
(CDW14)

Command Dword 15
(CDW15)

Data Buffer

<

NVMe Command Format – Admin Command Set

Management Interface Command Request Message Format

03:00

07:04

15:08

23:16

39:24

43:40

47:44

51:48

55:52

59:56

63:60

DescriptionOffset

31 0

Figure 4.3.1.1_2 NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping

Table

NVMe-MI Command Request Message NVMe Admin Command SQE Mapping

Byte Description Byte Description

NA
These bytes have no equivalent in NVMe-
MI.

23:00 Refer to the NVM Express specification.

NA

There is no equivalent of DPTR in NVMe-
MI. In NVMe-MI Send, the Request Data
is included in the Request Data portion of
the Request Message.

39:24

Data Pointer (DPTR): This field contains a
pointer to the start of the data buffer that
contains the Request Data portion of the
NVMe-MI Command that is being tunneled. If
there is no Request Data for this command
then this field is ignored. Refer to the NVM
Express Specification for the definition of this
field.

03:00 NVMe-MI Message Header (NMH) 43:40

Command Dword 10 (CDW10): Dword 0 of
the Request Message (NMH) that is being
tunneled maps to CDW10 of the SQE. The
byte ordering within CDW10 is little endian (i.e.
NMH byte 0 maps to CDW10 byte 0, NMH byte
1 maps to CDW10 byte 1, etc.).

04 Opcode (OPC) 47:44

07:05 Reserved

Command Dword 11 (CDW11): Dword 1 of
the Request Message (OPC and Reserved
bytes 7:5) that is being tunneled maps to
CDW11 of the SQE. The byte ordering within
CDW11 is little endian (i.e. OPC maps to
CDW11 byte 0, the LSB of the Reserved field
(NVMe-MI Command Request Message byte
5) maps to CDW11 byte 1, etc.).

11:08 NVMe Management Dword 0 (NMD0) 51:48

Command Dword 12 (CDW12): Dword 2 of
the Request Message (NMD0) that is being
tunneled maps to CDW12 of the SQE. The
byte ordering within CDW12 is little endian (i.e.
NMD0 byte 0 maps to CDW12 byte 0, NMD0
byte 1 maps to CDW12 byte 1.

15:12 NVMe Management Dword 1 (NMD1) 55:52

Command Dword 13 (CDW13): Dword 3 of
the Request Message (NMD1) that is being
tunneled maps to CDW13 of the SQE. The
byte ordering within CDW13 is little endian (i.e.
NMD1 byte 0 maps to CDW13 byte 0, NMD1
byte 1 maps to CDW13 byte 1.

NA This field has no equivalent in NVMe-MI. 59:56 Command Dword 14 (CDW14): Reserved.

NA This field has no equivalent in NVMe-MI. 63:60 Command Dword 15 (CDW15): Reserved.

N-1:16 Request Data (REQD) NA

Request Data is placed by host software into
the data buffer pointed to by DPTR. If the
Request Data is not Dword granular, then the
Request Data shall be padded with the
minumum number of bytes of zeroes to make
the Request Data Dword granular. The byte
ordering within the data buffer pointed to by
DPTR is little endian (i.e. REQD byte 0 maps
to byte 0 of the data buffer pointed to by DPTR,
REQD byte 1 maps to byte 1 of the data buffer
pointed to by DPTR, etc.).

N+3:N Message Integrity Check (MIC) NA
The Message Integrity Check is not used in the
in-band tunneling mechanism.

31

Figure 4.3.1.1_3 NVMe-MI Send Command Response Message to NVMe Admin Command CQE
Mapping Diagram

Management Interface Command Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

NVMe Management Response

 Response Data (optional)

Status

< Byte 0

< Byte 4

Bytes
8 to N - 1

< Byte N

<

Reserved

SQ Identifier

NVMe Completion Queue Entry Layout – Admin Command Set

SQ Head Pointer

Status Field Command IdentifierP

07:04
(DW1)

03:00
(DW0)

11:8
(DW2)

15:12
(DW3)

DescriptionOffset

31 23 15 7 0

Tunneled NVMe Management Response Tunneled
Status

Figure 4.3.1.1_4 NVMe-MI Send Command Response Message to NVMe Admin Command CQE

Mapping Table

NVMe-MI Command Response Message NVMe Admin Command CQE Mapping

Byte Description Byte Description

00 MCTP Data (MCTPD) NA
This field has no equivalent in the NVMe
Admin Command SQE.

01 NVMe-MI Message Parameters (NMP) NA
This field has no equivalent in the NVMe
Admin Command SQE.

03:02 Reserved NA
This field has no equivalent in the NVMe
Admin Command SQE.

04 Status (STATUS) 03:00

07:05 NVMe Management Response (NMRESP)

Command Specific (DW0): Dword 1 of the
Response Message (STATUS and
NMRESP) that is being tunneled maps to
DW0 of the CQE. The byte ordering within
DW0 is little endian (i.e. STATUS maps to
DW0 byte 0, the LSB of the NMRESP field
(NVMe-MI Command Response Message
byte 5) maps to DW0 byte 1, etc.). Refer to
Figure 4.3.1.1_5 for additional details on this
field.

N-1:8 Response Data (RESPD) NA
There is no Response Data for NVMe-MI
Send.

N+3:N Message Integrity Check (MIC) NA
The Message Integrity Check is not used in
the in-band tunneling mechanism.

NA
These bytes have no equivalent in NVMe-
MI.

15:04
Refer to the NVM Express specification.

The definition of Dword 0 of the completion queue entry is in Figure 4.3.1.1_5.

Figure 4.3.1.1_5: NVMe-MI Send – Completion Queue Entry Dword 0 (NSCQED0)

Bit Description

31:08

Tunneled NVMe Management Response (TNMRESP): This field contains the NVMe
Management Response field from the NVMe-MI Command that is being tunneled in-
band. If any errors are detected in the NVMe Context as described in section 4.3.1.2
then this field shall be set to 0h.

07:00
Tunneled Status (TSTAT): This field contains the Status field from the NVMe-MI
Command that is being tunneled in-band. If any errors are detected in the NVMe Context
as described in section 4.3.1.2 then this field shall be set to 0h.

4.3.1.2 NVMe-MI Send Command Servicing Model

The NVMe-MI Send command servicing model is illustrated in Figure 4.3.1.2_1 as a series of phases and
NVMe/NVMe-MI Contexts. The phases of the NVMe-MI Send command servicing model are further
described in this section. The behavior of the portions of the figure in the NVMe Context are specified by
the NVM Express specification. The behavior of the portions of the figure in the NVMe-MI Context are
specified by this specification. The phases and NVMe/NVMe-MI Contexts are logical constructs that
illustrate the NVMe-MI Send command servicing model and do not mandate a particular implementation.

This section describes the NVMe-MI Send command servicing model starting at NVMe Processing as
shown in phase 1 of Figure 4.3.1.2_1. In phase 1, CDW0 to CDW9 are checked for errors per the NVM
Express specification. If any errors are encountered in CDW0 to CDW9, then the NVMe-MI Send command
is completed with an error status code in the Status Field as per the NVM Express specification and the
Tunneled Status and Tunneled NVMe Management Response fields shall be set to 0h.

If there are no errors in CDW0 to CDW9, then command servicing enters phase 2 where the portion of the
tunneled NVMe-MI Command in CDW10 to CDW15 is checked for errors. Note that if there is no Request
Data then CDW10 to CDW15 contain the entire tunneled NVMe-MI Command. If any errors are
encountered in the portion of the tunneled NVMe-MI Command in CDW10 to CDW15, then the NVMe-MI
Send command is completed with a status code of Successful Completion in the Status Field as defined in
the NVM Express specification. The Tunneled Status field contains the error Response Message Status
Value for the portion of the tunneled NVMe-MI Command in CDW10 to CDW15 and the Tunneled NVMe
Management Response field contains the NVMe Management Response field from the NVMe-MI

33

Command that is being tunneled in-band.

If there are no errors in phase 2, then command servicing enters phase 3 where there is a check to
determine if there is any Request Data for the tunneled NVMe-MI Command. If there is no Request Data
for the tunneled NVMe-MI Command, then command servicing skips to phase 5. If there is Request Data,
then the Request Data is transferred from the buffer pointed to by DPTR. If any errors are encountered
transferring the Request Data then the command is completed with an error status code in the Status Field
as per the NVM Express specification and the Tunneled Status and Tunneled NVMe Management
Response fields shall be set to 0h.

If there are no errors transferring the data, then command servicing enters phase 4 where the whole
tunneled NVMe-MI Command is constructed from CDW10 to CDW15 and the Request Data that was
transferred. If any errors are encountered in the tunneled NVMe-MI Command, then the NVMe-MI Send
command is completed with a status code of Successful Completion in the Status Field as defined in the
NVM Express specification. The Tunneled Status field contains the appropriate error Response Message
Status Value and the Tunneled NVMe Management Response field contains the NVMe Management
Response field from the NVMe-MI Command that is being tunneled in-band.

If there are no errors in phase 4, then command servicing enters phase 5 where the tunneled NVMe-MI
Command finishes processing. If any errors are encountered processing the tunneled NVMe-MI Command,
then the NVMe-MI Send command is completed with a status code of Successful Completion in the Status
Field as defined in the NVM Express specification and the Tunneled Status field contains the appropriate
error Response Message Status Value. If the tunneled NVMe-MI Command is processed successfully,
then the NVMe-MI Send command is completed with a status code of Successful Completion in the Status
Field as defined in the NVM Express specification. The Tunneled Status field contains a Response
Message Status Value of Success for the tunneled NVMe-MI Command and the Tunneled NVMe
Management Response field contains the NVMe Management Response field from the NVMe-MI
Command that is being tunneled in-band.

Figure 4.3.1.2_1: NVMe-MI Send Command Servicing Model

Check for errors in
CDW0 to CDW9.

NVMe
Error(s)? YES

Check for errors in
tunneled NVMe-MI

Command in CDW10
to CDW15 and
Request Data.

NO

Transfer
Request

Data.

NVMe
Error(s)?

YES

NVMe-MI
Error(s)?

YES

NO

Process the
tunneled NVMe-MI

Command.

Set Tunneled Status
set to appropriate
NVMe-MI error.

Check for errors in
tunneled NVMe-MI

Command in CDW10
to CDW15.

NVMe-MI
Error(s)?

Return NVMe Successful
Completion in Status Field.

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

NO

NO

Phase
1

Phase
2

Return NVMe error status
code in Status Field. TSTAT

and TNMRESP cleared to 0h.

Phase
3

Return NVMe error
status code in Status

Field. TSTAT and
TNMRESP cleared to

0h.

Phase
4

Set Tunneled Status
to Success

NVMe-MI
Error(s)?

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

Return NVMe Successful
Completion in Status Field.

NO

Phase
5

Start of NVMe
Processing

Is there Request
Data?

YES

NO

N
V

M
e

C
o

n
te

xt
N

V
M

e
C

o
n

te
xt

N
V

M
e

C
o

n
te

xt
N

V
M

e-
M

I
C

o
n

te
xt

N
V

M
e-

M
I

C
o

n
te

xt

Return NVMe Successful
Completion in Status Field.

N
V

M
e-

M
I

C
o

n
te

xt

N
V

M
e

C
o

n
te

xt

35

4.3.2 NVMe-MI Receive Command

The NVMe-MI Receive command is an NVMe Admin Command as defined by this specification and the
NVM Express Specification. It is used to tunnel an NVMe-MI Command in-band from host software to an
NVMe Controller that transfers data from an NVMe Controller to a host (similar to a read operation). The
data being transferred is in one or more of the following locations: Response Data, NVMe Management
Response.

The mapping of how NVMe-MI Commands are tunneled inside of NVMe-MI Receive commands is
described in section 4.3.2.1. The NVMe-MI Receive command servicing model is described in section
4.3.2.2.

4.3.2.1 NVMe-MI Receive Command Request Message to NVMe Admin Command SQE Mapping

In order to tunnel NVMe-MI Commands in-band via NVMe-MI Receive, NVMe-MI Request Messages are
mapped onto NVMe Submission Queue Entries (SQE) as shown pictorially in Figure 4.3.2.1_1 and in table
form in Figure 4.3.2.1_2. NVMe-MI Response Messages are mapped on to NVMe Completion Queue
Entries (CQE) as shown pictorially in Figure 4.3.2.1_1 and in table form in Figure 4.3.2.1_3. Refer to the
NVM Express specification for details on NVMe Submission Queue Entries and NVMe Completion Queue
Entries.

Figure 4.3.2.1_1 NVMe-MI Receive Command Request/Response Message to NVMe Admin Command
SQE/CQE Mapping Diagram

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

< Byte 0Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode < Byte 4

< Byte 8NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

< Byte 12

Bytes
16 to N - 1

< Byte N

Reserved

Data Buffer

<

NVMe Command Format – Admin Command Set

Management Interface Command Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

NVMe Management Response

 Response Data (optional)

Status

< Byte 0

< Byte 4

Bytes
8 to N - 1

< Byte N

<

Management Interface Command Request Message Format

Command Dword 0
(CDW0)

Namespace Identifier
(NSID)

Reserved

Metadata Pointer (MPTR)

Data Pointer (DPTR)

Command Dword 10
(CDW10)

Command Dword 11
(CDW11)

Command Dword 12
(CDW12)

Command Dword 13
(CDW13)

Command Dword 14
(CDW14)

Command Dword 15
(CDW15)

03:00

07:04

15:08

23:16

39:24

43:40

47:44

51:48

55:52

59:56

63:60

DescriptionOffset

NVMe Completion Queue Entry Layout – Admin Command Set

31 0

Tunneled NVMe Management Response

Reserved

SQ Identifier SQ Head Pointer

Status Field Command IdentifierP

07:04
(DW1)

03:00
(DW0)

11:8
(DW2)

15:12
(DW3)

DescriptionOffset

31 23 15 7 0

Tunneled
Status

37

Figure 4.3.2.1_2 NVMe-MI Receive Command Request/Response Message to NVMe Admin Command
SQE/CQE Mapping Table

NVMe-MI Command Request Message NVMe Admin Command SQE Mapping

Byte Description Byte Description

NA
These bytes have no equivalent in NVMe-
MI.

23:00 Refer to the NVM Express specification.

NA

There is no equivalent of DPTR in NVMe-
MI. In NVMe-MI Receive, the Response
Data is included in the Response Data
portion of the Response Message.

39:24

Data Pointer (DPTR): This field contains a
pointer to the start of the data buffer that
contains the Response Data portion of the
NVMe-MI Command that is being tunneled. If
there is no Resposne Data for this command
then this field is ignored. Refer to the NVM
Express Specification for the definition of this
field.

03:00 NVMe-MI Message Header (NMH) 43:40

Command Dword 10 (CDW10): Dword 0 of
the Request Message (NMH) that is being
tunneled maps to CDW10 of the SQE. The
byte ordering within CDW10 is little endian (i.e.
NMH byte 0 maps to CDW10 byte 0, NMH byte
1 maps to CDW10 byte 1, etc.).

04 Opcode (OPC)

47:44

Command Dword 11 (CDW11): Dword 1 of
the Request Message (OPC and Reserved
bytes 7:5) that is being tunneled maps to
CDW11 of the SQE. The byte ordering within
CDW11 is little endian (i.e. OPC maps to
CDW11 byte 0, the LSB of the Reserved field
(NVMe-MI Command Request Message byte
5) maps to CDW11 byte 1, etc.).

07:05 Reserved

11:08 NVMe Management Dword 0 (NMD0) 51:48

Command Dword 12 (CDW12): Dword 2 of
the Request Message (NMD0) that is being
tunneled maps to CDW12 of the SQE. The
byte ordering within CDW12 is little endian (i.e.
NMD0 byte 0 maps to CDW12 byte 0, NMD0
byte 1 maps to CDW12 byte 1.

15:12 NVMe Management Dword 1 (NMD1) 55:52

Command Dword 13 (CDW13): Dword 3 of
the Request Message (NMD1) that is being
tunneled maps to CDW13 of the SQE. The
byte ordering within CDW13 is little endian (i.e.
NMD1 byte 0 maps to CDW13 byte 0, NMD1
byte 1 maps to CDW13 byte 1.

NA This field has no equivalent in NVMe-MI. 59:56 Command Dword 14 (CDW14): Reserved.

NA This field has no equivalent in NVMe-MI. 63:60 Command Dword 15 (CDW15): Reserved.

N-1:16 Request Data (REQD) NA
There is no Request Data for NVMe-MI
Receive.

N+3:N Message Integrity Check (MIC) NA
The Message Integrity Check is not used in the
in-band tunneling mechanism.

Figure 4.3.2.1_3 NVMe-MI Receive Command Response Message to NVMe Admin Command CQE
Mapping Table

NVMe-MI Command Response Message NVMe Admin Command CQE

Byte Description Byte Description

00 MCTP Data (MCTPD) NA
This field has no equivalent in the NVMe
Admin Command SQE.

01 NVMe-MI Message Parameters (NMP) NA
This field has no equivalent in the NVMe
Admin Command SQE.

03:02 Reserved NA
This field has no equivalent in the NVMe
Admin Command SQE.

04 Status (STATUS)

03:00

Command Specific (DW0): Dword 1 of the
Response Message (STATUS and
NMRESP) that is being tunneled maps to
DW0 of the CQE. The byte ordering within
DW0 is little endian (i.e. STATUS maps to
DW0 byte 0, the LSB of the NMRESP field
(NVMe-MI Command Response Message
byte 5) maps to DW0 byte 1, etc.). Refer to
Figure 4.3.2.1_4 for additional details on this
field.

07:05 NVMe Management Response (NMRESP)

N-1:8 Response Data (RESPD) NA

Response Data is placed by the NVMe
Controller into the data buffer pointed to by
DPTR. If the Response Data size is not
Dword granular, then the Response Data
shall be padded with the minimum number of
bytes of zeroes to make the Response Data
Dword granular. The byte ordering within the
data buffer pointed to by DPTR is little endian
(i.e. RESPD byte 0 maps to byte 0 of the data
buffer pointed to by DPTR, RESPD byte 1
maps to byte 1 of the data buffer pointed to by
DPTR, etc.).

N+3:N Message Integrity Check (MIC) NA
The Message Integrity Check is not used in
the in-band tunneling mechanism.

NA
These bytes have no equivalent in NVMe-
MI.

15:04
Refer to the NVM Express specification.

The definition of Dword 0 of the completion queue entry is in Figure 4.3.2.1_4.

Figure 4.3.2.1_4: NVMe-MI Receive – Completion Queue Entry Dword 0 (NRCQED0)

Bit Description

31:08

Tunneled NVMe Management Response (TNMRESP): This field contains the NVMe
Management Response field from the NVMe-MI Command that is being tunneled in-
band. If any errors are detected in the NVMe Context as described in section 4.3.2.2
then this field shall be set to 0h.

07:00
Tunneled Status (TSTAT): This field contains the Status field from the NVMe-MI
Command that is being tunneled in-band. If any errors are detected in the NVMe Context
as described in section 4.3.2.2 then this field shall be set to 0h.

4.3.2.2 NVMe-MI Receive Command Servicing Model

The NVMe-MI Receive command servicing model is illustrated in Figure 4.3.2.2_1 as a series of phases
(described in this section) and NVMe/NVMe-MI Contexts. The phases of the NVMe-MI Receive command
servicing model are further described in this section. The behavior of the portions of the figure in the NVMe
Context are specified by the NVM Express specification. The behavior of the portions of the figure in the
NVMe-MI Context are specified by this specification. The phases and NVMe/NVMe-MI Contexts are logical

39

constructs that illustrate the NVMe-MI Receive command servicing model and do not mandate a particular
implementation.

This section describes the NVMe-MI Receive command servicing model starting at NVMe Processing as
shown in phase 1 of Figure 4.3.2.2_1. In phase 1, CDW0 to CDW9 are checked for errors per the NVM
Express specification. If any errors are encountered in CDW0 to CDW9, then the command is completed
with an error status code in the Status Field as per the NVM Express specification and the Tunneled Status
and Tunneled NVMe Management Response fields shall be set to 0h.

If there are no errors in CDW0 to CDW9, then command servicing enters phase 2 where the tunneled
NVMe-MI Command in CDW10 to CDW15 is checked for errors. If any errors are encountered in the
tunneled NVMe-MI Command in CDW10 to CDW15, then the NVMe-MI Receive command is completed
with a status code of Successful Completion in the Status Field as defined in the NVM Express specification.
The Tunneled Status field contains the appropriate error Response Message Status Value and the
Tunneled NVMe Management Response field contains the NVMe Management Response field from the
NVMe-MI Command that is being tunneled in-band.

If there are no errors in phase 2, then command servicing enters phase 3 where the tunneled NVMe-MI
Command finishes processing. If any errors are encountered processing the tunneled NVMe-MI Command,
then the NVMe-MI Receive command is completed with a status code of Successful Completion in the
Status Field as defined in the NVM Express specification. The Tunneled Status field contains the
appropriate error Response Message Status Value and the Tunneled NVMe Management Response field
contains the NVMe Management Response field from the NVMe-MI Command that is being tunneled in-
band.

If there are no errors in phase 3, then command servicing enters phase 4 where there is a check to
determine if there is any Response Data for the tunneled NVMe-MI Command. If there is no Response
Data for the tunneled NVMe-MI Command, then command servicing skips to phase 5. If there is Response
Data, then the Response Data is transferred to the buffer pointed to by DPTR. If any errors are encountered
transferring the Response Data then the command is completed with an error status code in the Status
Field as per the NVM Express specification and the Tunneled Status and Tunneled NVMe Management
Response fields shall be set to 0h.

If there are no errors in phase 4, then command servicing enters phase 5 where the NVMe-MI Receive
command is completed with a status code of Successful Completion in the Status Field as defined in the
NVM Express specification. The Tunneled Status field contains a Response Message Status Value of
Success for the tunneled NVMe-MI Command and the Tunneled NVMe Management Response field
contains the NVMe Management Response field from the NVMe-MI Command that is being tunneled in-
band.

Figure 4.3.2.2_1: NVMe-MI Receive Command Servicing Model

NO

Process the
tunneled NVMe-MI

Command.

Check for errors in
tunneled NVMe-MI

Command in CDW10
to CDW15.

NVMe-MI
Error(s)?

Return NVMe Successful
Completion in Status Field.

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

NO

Phase
2

NVMe-MI
Error(s)?

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

Return NVMe
Successful Completion

in Status Field.

NO

Phase
3

NVMe
Error(s)?

YES
Transfer

Response
Data.

Phase
4

Return NVMe error status
code in Status Field. TSTAT
and TNMRESP cleared to 0h.

Set Tunneled
Status to
Success

Return NVMe Successful
Completion in Status Field.

Phase
5

NO

Check for errors in
CDW0 to CDW9.

NVMe
Error(s)?

YES

Phase
1 Return NVMe error status

code in Status Field. TSTAT
and TNMRESP cleared to 0h.

Start of NVMe
Processing

Is there
Response Data?

YES

NO

N
V

M
e

C
o

n
te

xt
N

V
M

e-
M

I
C

o
n

te
xt

N
V

M
e

C
o

n
te

xt
N

V
M

e-
M

I
C

o
n

te
xt

N
V

M
e

C
o

n
te

xt

N
V

M
e-

M
I

C
o

n
te

xt

N
V

M
e

C
o

n
te

xt

41

Modify Section 5 (Management Interface Command Set) as shown below:

The Management Interface Command Set defines the Command Messages that may be submitted by a
RequesterManagement Controller when the NMIMT value is set to NVMe-MI Command. The
Management Interface Command Set is applicable to both the out-of-band mechanism and the in-band
tunneling mechanism.

The MCTPNVMe-MI Message structure with all fields that are common to all MCTPNVMe-MI Messages
are defined for commands in section 3.2. The Response Message structure for the Management
Interface Command Set is defined in section 4.2. The Message Body for the Management Interface
Commands Set is shown in Figure 34. Command specific fields for the Management Interface
cCommand sSet are defined in this section.

Figure 33: Management Interface NVMe-MI Command Request Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

OpcodeByte 4 >

Byte 8 > NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

Byte 12 >

Bytes
16 to N

>

Byte M >

Reserved

Figure 34: Management Interface NVMe-MI Command Request Message Description (NCREQ)

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to 3.2.

04
Opcode (OPC): This field specifies the opcode of the NVMe-MI Management Interface
cCommand to be executed. Refer to Figure 35.

07:05 Reserved

11:08 NVMe Management Dword 0 (NMD0): This field is command specific Dword 0.

15:12 NVMe Management Dword 1 (NMD1): This field is command specific Dword 1.

N:16 Request Data (REQD): (Optional)

M+3:M Message Integrity Check (MIC): Refer to 3.2.

The Request Data field is an optional field included in some NVMe-MI Management Interface cCommands.
If the size of the Request Data does not match the specified Data Length of the Command Message, then
the Management EndpointResponder responds with a gGeneric eError rResponse and Invalid Command

Commented [AB248]: Section 3.1 after sections are
moved.

Commented [AB249]: Section 4.1.2 after sections are
moved.

Commented [AB250]: Section 3.1 after sections are
moved.

Commented [AB251]: Section 3.1 after sections are
moved.

Input Data Size status.

Figure 35 defines the Management Interface Command Set opcodes.

Figure 35: Opcodes for Management Interface Commands

Opcode O/M1 Command

00h M Read NVMe-MI Data Structure

01h M NVM Subsystem Health Status Poll

02h M Controller Health Status Poll

03h M Configuration Set

04h M Configuration Get

05h M VPD Read

06h M VPD Write

07h O Reset

08h – BFh - Reserved

C0h – FFh O Vendor specific

NOTES:

1. O/M definition: O = Optional, M = Mandatory.

Figure 36: Management Interface NVMe-MI Command Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Byte 4 > NVMe Management Response

 Response Data (optional)
Bytes
8 to N

>

Byte M >

Status

Figure 37: Management Interface NVMe-MI Command Response Message Description (NCRESP)

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to 3.2

04
Status (STATUS): This field indicates the status of the NVMe-MI
cCommand. Refer to 4.2.

07:05
NVMe Management Response (NMRESP): This field is command
specific.

N:8 Response Data (RESPD): (optional)

M+3:M Message Integrity Check (MIC): Refer to 3.2.

Commented [AB252]: Section 3.1 after sections are
moved.

Commented [AB253]: Section 4.1.2 after sections are
moved.

Commented [AB254]: Section 3.1 after sections are
moved.

43

Modify Figure 40 (NVMe Management Interface Configuration Identifiers) as shown below:

Configuration
Identifier

O/M1 Description

00h Reserved

01h M SMBus/I2C Frequency

02h M Health Status Change

03h M MCTP Transmission Unit Size

04h - BFh Reserved

C0h - FFh O Vendor Specific

NOTES:
1. O/M definition: O = Optional, M = Mandatory.

Configuration
Identifier

O/M1 Out-of-
Band

Mechanism

O/M1 In-
Band

Tunneling
Mechanism

Description

00h - - Reserved

01h M P SMBus/I2C Frequency

02h M M Health Status Change

03h M P MCTP Transmission Unit Size

04h - BFh - - Reserved

C0h - FFh O O Vendor Specific
NOTES:

1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited from being supported.

Modify Section 5.1.2 (Health Status Change (Configuration Identifier 02h)) as shown below:

The Health Status Change configuration is used to clear the selected status bits in the Composite Controller
Status field using Configuration Set. A Management ControllerRequester should not use Configuration Get
for this Configuration Identifier.

The configuration specific fields in NVMe Management Dwords 0 and 1 are reserved. A Management
EndpointResponder shall complete a Configuration Get command on this Configuration Identifier with a
Success Response Message. The NVMe Management Response field is reserved and there is no
Response Data.

Modify a portion of Section 5.2 (Configuration Set) as shown below:

The Configuration Set command allows the Management ControllerRequester to modify the current
configuration of a Management EndpointResponder.

Modify a portion of Figure 64 (PCIe Port Specific data) as shown below:

11 PCIe Maximum Link Width: The maximum PCIe link width for this NVM Subsystem port.
This is the expected negotiated link width that the port link trains to if the platform supports it .

A Management ControllerRequester may compare this value with the PCIe Negotiated Link
Width to determine if there has been a PCIe link training issue.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5-7 Reserved

8 PCIe x8

9-11 Reserved

12 PCIe x12

13-15 Reserved

16 PCIe x16

17-31 Reserved

32 PCIe x32

33-255 Reserved

Modify a portion of Section 5.5 (Read NVMe-MI Data Structure) as shown below:

The Optionally Supported Command List data structure contains a list of optional commands that a
Management EndpointResponder supports. The Optionally Supported Command List data structure may
contain up to 2047 commands, and shall be minimally sized (i.e., if there is 1 optionally supported
command, the data structure is 4 bytes total).

Modify a portion of Section 5.7 (VPD Read) as shown below:

A VPD Read command with length 0 and no data is valid. The Management EndpointResponder responds
with a Success Response Message and no Response Data. If the Data Length plus Data Offset fields are
greater than the size of the VPD, then the Management EndpointResponder does not return the VPD
contents and responds with an Invalid Parameter error status response.

Modify a portion of Section 5.8 (VPD Write) as shown below:

The VPD contents should be capable of being updated at least 100 times using the VPD Write command.
If there is an error preventing update of the VPD contents, then the Management EndpointResponder
responds with a gGeneric eError rResponse and VPD Writes Exceeded status.

A VPD Write command with length 0 and no data is valid. The Management EndpointResponder responds
with a Success Response Message.

45

Figure 73: VPD Write – NVMe Management Dword 0

Bit Description

31:16 Reserved

15:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the VPD data that
is written.

Figure 74: VPD Write – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
Data Length (DLEN): This field specifies the length, in bytes, to be written to the VPD starting
at the byte offset specified by DOFST.

Figure 3: VPD Write Request Data

Skipped
Data

VPD contents

Request
Data

Request Data

Data Offset
(DOFST)

Data Length
(DLEN)

Skipped
Data

The Management ControllerRequester should not read the contents of the VPD while this command is
processingservicing. Reading the contents of the VPD or executing a VPD Read command while a VPD
Write command is executing may return incorrect data as a result of the read.

If the Data Length plus Data Offset fields are greater than the size of the VPD, then the Management
EndpointResponder does not write to the VPD and responds with an Invalid Parameter error status
response.

Modify a portion of Section 6 (NVM Express Admin Command Set) as shown below:

Future revisions of this specification may add additional commands to Figure 76. The NVM Express Admin
Command Set is only applicable in the out-of-band mechanism and is prohibited in the in-band tunneling
mechanism.

Modify a portion of Section 7 (PCIe Command Set (optional)) as shown below:

The NMIMT field in the message header for PCIe Command Messages and Response Messages is set to

4h (PCIe Command). The PCIe Command Set is only applicable in the out-of-band mechanism and is
prohibited in the in-band tunneling mechanism.

Modify Figure 86 (PCIe Command Response Description) as shown below:

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to 3.2.

04
Status (STATUS): This field indicates the status of the NVMe-MI PCIe command.
Refer to 4.2.

07:05 Reserved

N:08 Response Data (RESPD): (optional)

M+3:M Message Integrity Check (MIC): Refer to 3.2.

Modify a portion of Section 9.1 (Operational Times) as shown below:

9.1 Out-of-Band Operational Times

In the out-of-band mechanism, Tthe ability of a Management Endpoint to receive and process Request
Messages outlined in this specification is dependent on the state of the Management Endpoint. This section
enumerates Management Endpoint operational times and the operations supported in each of these
operational times.

Modify a portion of Section 9.2 (Vital Product Data) as shown below:

Each NVM Subsystem with one or more Management EndpointsResponders shall have a FRU Information
Device which is compliant with the IPMI Platform Management FRU Information Storage Definition.

Modify Section 9.3 (Reset) as shown below:

9.3 Out-of-Band Reset

This section describes NVMe-MI architected resets in the out-of-band mechanism.

Modify a portion of Section 9.3.2 (Controller Level Reset) as shown below:

A Controller Level Reset that causes a new firmware image to activate is considered a special event and
may impact the operation of the Controller Management Interface associated with one or more Controllers,
execution of NVMe-MI Messagescommands, and Management Endpoints within an NVM Subsystem. This
impact is unspecified and vendor specific. The Management Controller and host should coordinate the
activation of a new firmware image. Coordination between a Management Controller and a host are outside
the scope of this specification.

Modify a portion of Section 9.4 (Security) as shown below:

9.3 Out-of-Band Security

In the out-of-band mechanism, Tthe Management Endpoint may respond with a Response Message Status
value of Access Denied in an eError rResponse.

Commented [AB255]: Section 3.1 after sections are
moved.

Commented [AB256]: Section 4.1.2 after sections are
moved.

Commented [AB257]: Section 3.1 after sections are
moved.

	NVM Express Technical Proposal for New Feature
	Technical Proposal Author(s)
	Revision History
	1.3.11.3.1.1 Management Component Transport Protocol
	1.3.1.2 FRU Information Device
	1.3.2 In-Band Theory of Operation
	1.4.1 Out-of-Band Architectural Model Extensions
	1.5.1.a Control Primitive
	1.5.1.b Request Message
	1.5.1.c Response Message
	1.5.1.d In-Band
	1.5.1.e Out-of-Band
	1.5.1.f NVMe-MI Message
	1.5.1.g Requester
	1.5.1.h Responder
	1.5.1.i NVMe Processing
	1.5.1.j Process
	3.1 MCTPNVMe-MI Messages
	3.2 Out-of-Band Message Transport
	3.3 In-Band Tunneling Message Transport
	4.4.14.2.1.1 Pause
	4.4.14.2.1.2 Resume
	4.4.14.2.1.3 Abort
	4.4.14.2.1.4 Get State
	4.4.14.2.1.5 Replay

	4.54.2.2 Out-of-Band Error Handling
	4.54.2.2.1 Command Timeouts
	4.54.2.2.2 Control Primitive Timeouts

	4.3 In-Band Tunneling Message Servicing Model
	4.3.1 NVMe-MI Send Command
	4.3.2 NVMe-MI Receive Command

	9.1 Out-of-Band Operational Times

