

NVMe[™] Management Interface (NVMe-MI[™]) Workgroup Update

Sponsored by NVM Express® organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards

Austin Bolen

DELLEMC

Myron Loewen

Agenda

- NVMe-MI[™] Workgroup Update
- NVMe-MI 1.0a Overview
- What's new in NVMe-MI 1.1
 - In-band NVMe-MI
 - Enclosure Management
 - Managing Multi NVM Subsystem Devices
- Summary

NVM Express[®], Inc. 120+ Companies defining NVMe[™] together

Board of Directors

13 elected companies, stewards of the technology & driving processes Chair: Amber Huffman

Marketing Workgroup

NVMexpress.org, webcasts, tradeshows, social media, and press Co-Chairs: Janene Ellefson and Jonmichael Hands

Technical Workgroup

NVMe Base and NVMe Over Fabrics Chair[.] Amber Huffman

Management Intf. Workgroup

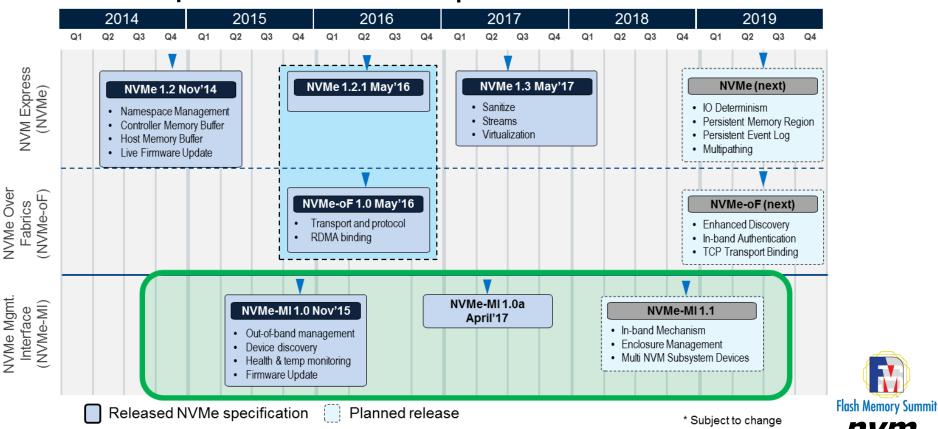
Out-of-band management over SMBus and PCIe® VDM Chair: Peter Onufryk Vice Chair: Austin Bolen

ախորհ

Interop (ICC) Workgroup

Interop & Conformance Testing in collaboration with UNH-IOL Chair: Ryan Holmqvist

ORACLE


DELLEMC

SEAGATE

5

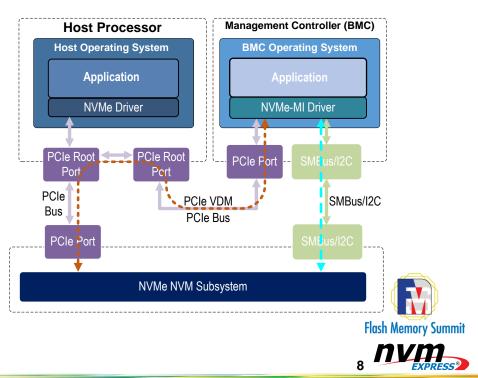
EXPRESS

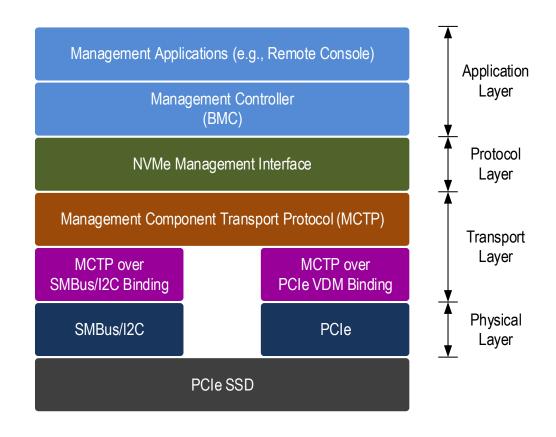
NVM Express[™] Roadmap

NVMe-MI[™] Ecosystem

- Commercial test equipment for NVMe-MI
- NVMe-MI 1.0a compliance testing program has been developed
 - Compliance testing started in the May 2017 NVMe[™] Plugfest conducted by the University of New Hampshire Interoperability Laboratory (UNH-IOL)
 - 7 devices from multiple vendors have passed compliance testing and are on the NVMe-MI Integrators List
- Servers are shipping that support NVMe-MI

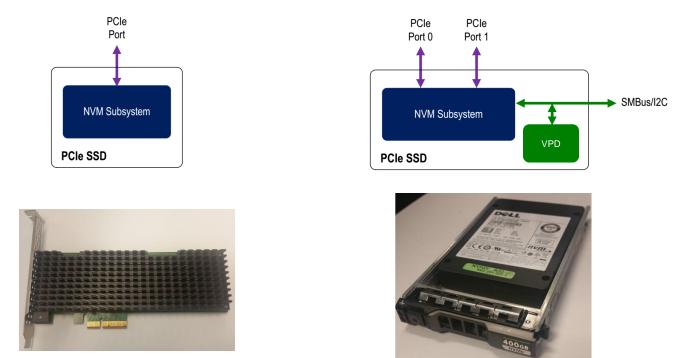
What is the NVMe[™] Management Interface 1.0a?


A programming interface that allows out-of-band management of an NVMe Storage Device Field Replaceable Unit (FRU)

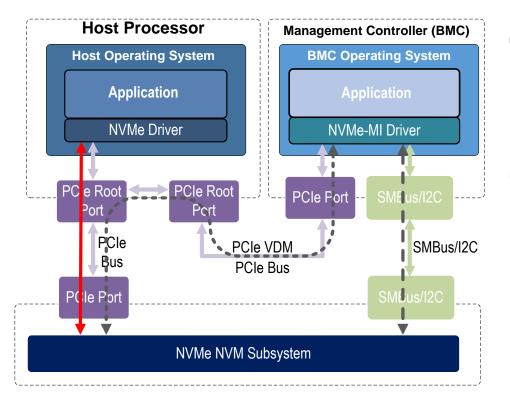

Out-of-Band Management and NVMe-MI™

 Out-of-Band Management – Management that operates with hardware resources and components that are *independent of the host operating system control*

- NVMe[™] Out-of-Band Management Interfaces
 - SMBus/I2C
 - PCIe Vendor Defined Messages (VDM)

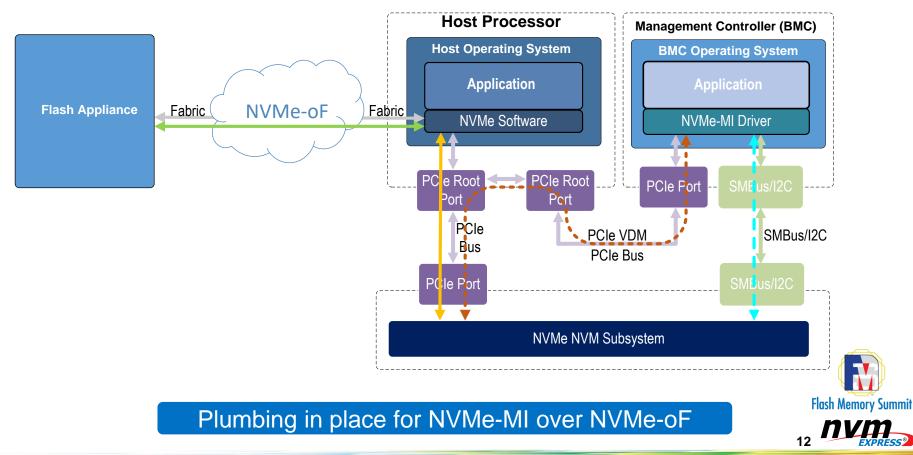


NVMe-MI[™] Out-of-Band Protocol Layering


NVMe[™] Storage Device in 1.0a

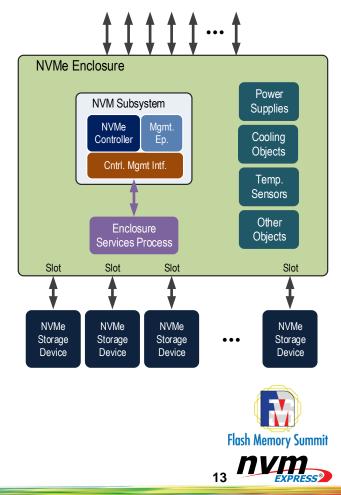
 NVMe Storage Device – One NVM Subsystem with one or more ports, vital product data (VPD), and an optional SMBus/I2C interface

In-Band Management and NVMe-MI[™]


- In-band mechanism allows application to tunnel NVMe-MI commands through NVMe[™] driver
 - Two new NVMe Admin commands
 - NVMe-MI Send
 - NVMe-MI Receive

Benefits

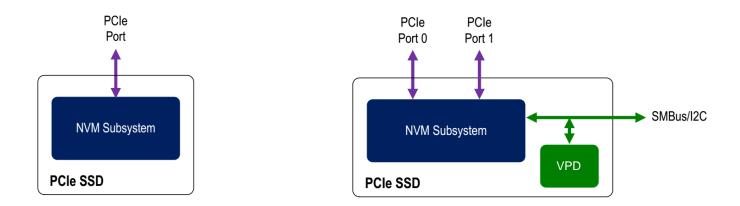
- Provides management capabilities not available in-band via NVMe commands
 - Efficient NVM Subsystem health status reporting
 - Ability to manage NVMe at a FRU level
 - Vital Product Data (VPD) access
 - Enclosure management



NVMe-MI[™] over NVMe-oF[™]

Enclosure Management

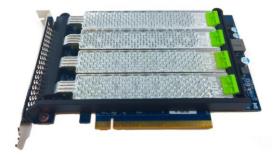
- SES Based Enclosure Management
 - Technical proposal developed in NVMe-MI™ workgroup
 - While the NVMe[™] and SCSI architectures differ, the elements of an enclosure and the capabilities required to manage these elements are the same
 - Example enclosure elements: power supplies, fans, display or indicators, locks, temperature sensors, current sensors, voltage sensors, and ports
 - Comprehensive enclosure management that leverages SCSI Enclosure Services (SES), a standard developed by T10 for management of enclosures using the SCSI architecture

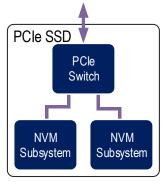


Multi NVM Subsystem Management

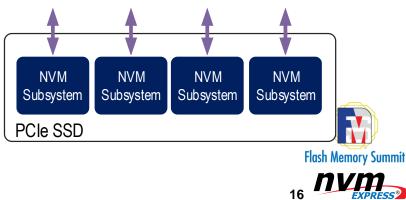
NVMe-MI[™] 1.0a NVMe[™] Storage Device

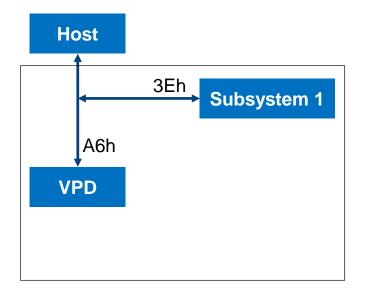
NVM Storage Device – One NVM Subsystem with one or more ports and an optional SMBus/I2C interface


Single Ported PCIe SSD

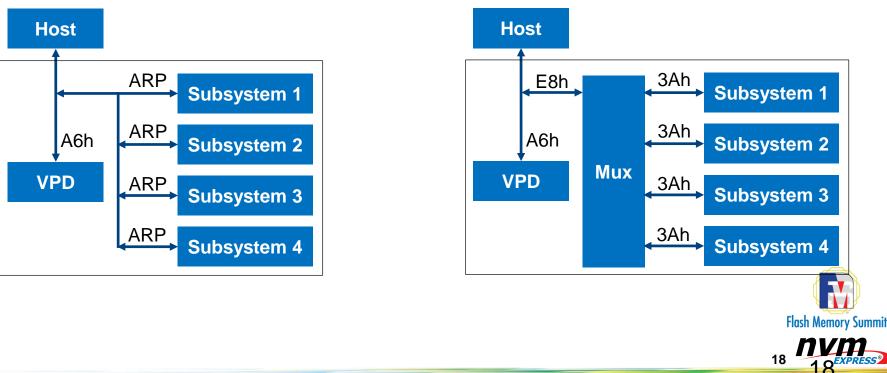


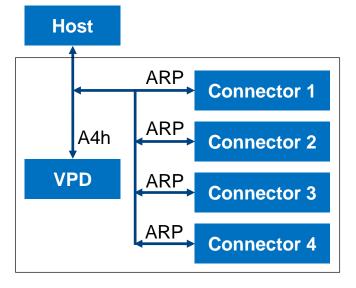
NVMe[™] Storage Device with Multiple NVM Subsystems

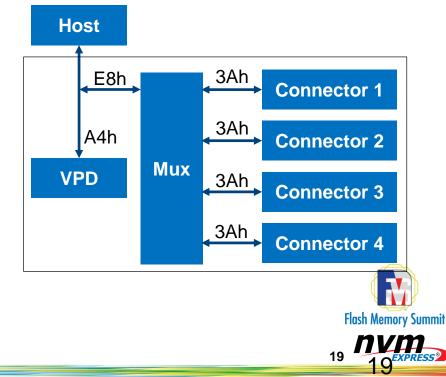


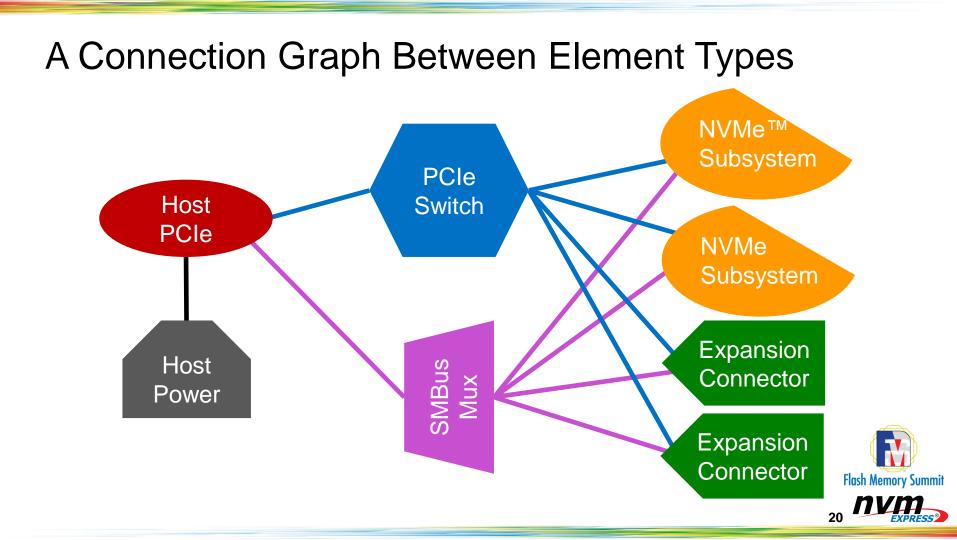

M.2 Carrier Board from Amfeltec

ANA Carrier Board from Facebook


SMBus Topology for NVMe-MI[™] 1.0

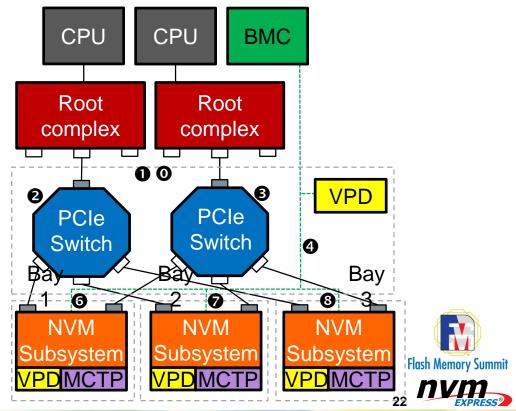

Multiple NVM Subsystems on a single SMBus Port


- Describe topology in new VPD MultiRecord
- Add UDID types for additional devices like Mux



Support Expansion Connectors

- New VPD address to avoid conflicts with plugged in devices
- Optional Labels for each connector to assist technicians


Single Port Example (35 bytes of 256B EEPROM)

	CP	U	BMC		Record:	Record	Record	Record	Header	Version	Rsvd	Element	
				Header					Chcksm 75h		00h	Count 03h	
	(Root complex			Type: Host 01h	Element Length 08h	Form Factor 12h	SMBus Dest 02h	Link Options 00h	Link 0 Width 84h	Link 0 Start 00h	Link 0 Dest. 02h	
				Element		Element Length 08h	Thermal Load 0Fh	Vaux Load 32h	Rail Options 00h	Rail Voltage 78h	12V initial 08h	12V max 0Fh	
NVM 2 Subsystem				Elemen 2	Type: NVMe 09h	Element Length 13h	MCTP Address 3Ah		PCIe Ports 12h	Port 0 Speed 0Fh	Port 0 Flags 01h	Total NVM Capacity (MSB first) 000000000000000000000000000000000000	
	N	<u>ICTP</u>	······[VP	D	_								

Dual Port with Expansion Connectors (78)

Summary

- NVMe-MI[™] 1.0a is gaining market acceptance and is available in shipping products
- NVMe-MI 1.1 is nearing completion
 - Significant new features
 - In-band mechanism
 - Enclosure management
 - Support for multi NVM subsystem management
- It is time to start thinking about anchor features for NVMe-MI 1.2

Additional Material on NVMe-MI™

- BrightTALK Webinar
 - o https://www.brighttalk.com/webcast/12367/282765/the-nvme-management-interface-nvme-mi-learn-whats-new
- Flash Memory Summit 2017
 - o Slides: <u>https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170808_FA12_PartA.pdf</u>
 - o Video:
 - o <u>https://www.youtube.com/watch?v=daKL7tlvNII</u>
 - o https://www.youtube.com/watch?v=Daqj-XqlCo8
- Flash Memory Summit 2015
 - o Slides: <u>https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150811_FA11_Carroll.pdf</u>
- Flash Memory Summit 2014
 - o Slides: https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2014/20140804_SeminarF_Onufryk_Bolen.pdf
- NVMe-MI Specification
 - o https://nvmexpress.org/resources/specifications/

MCTP Overview: http://dmtf.org/sites/default/files/standards/documents/DSP2016.pdf

MCTP Base Spec: https://www.dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf

MCTP SMBus/I2C Binding: https://www.dmtf.org/sites/default/files/standards/documents/DSP0237_1.1.0.pdf

MCTP PCIe VDM Binding: https://www.dmtf.org/sites/default/files/standards/documents/DSP0238_1.0.2.pdf

IPMI Platform Management FRU Information Storage Definition: https://www.intel.la/content/www/xl/es/servers/ipmi/ipmi-platform-mgt-fru-infostorage-def-v1-0-rev-1-3spec-update.html

