
NVM Express Management Interface 1.0

1

NVM Express

Management Interface

Revision 1.0

November 17, 2015

Please send comments and questions to info@nvmexpress.org

mailto:info@nvmexpress.org
mailto:info@nvmexpress.org

NVM Express Management Interface 1.0

2

NVM Express Management Interface revision 1.0 specification available for download at
http://nvmexpress.org. NVM Express Management Interface revision 1.0 ratified on November 17th, 2015.
LEGAL NOTICE:

© Copyright 2007 - 2015 NVM Express, Inc. ALL RIGHTS RESERVED.

This NVM Express Management Interface revision 1.0 specification is proprietary to the NVM Express,
Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express Management Interface revision 1.0 specification
subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy
and Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2015 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such
citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the
property of their respective owners.

NVM Express Workgroup
c/o Virtual, Inc.
401 Edgewater Place, Suite 600
Wakefield, MA 01880
info@nvmexpress.org

Peter Z. Onufryk

Workgroup Chair

John W. Carroll

Specification Editor

NVM Express Management Interface 1.0

3

Table of Contents

1 INTRODUCTION ... 6

1.1 Overview ... 6
1.2 Scope .. 6

1.2.1 Outside of Scope .. 6
1.3 Theory of Operation .. 6
1.4 Architectural Model ... 7
1.5 Conventions .. 9

1.5.1 Definitions .. 9
1.5.1.1 Controller or NVMe Controller .. 9
1.5.1.2 Controller Management Interface or NVMe Controller Management Interface 10
1.5.1.3 Management Controller .. 10
1.5.1.4 Management Endpoint or NVMe Management Endpoint ... 10
1.5.1.5 VPD or Vital Product Data .. 10
1.5.1.6 FRU Information Device ... 10
1.5.1.7 Command Slot.. 10
1.5.1.8 Request Message .. 10
1.5.1.9 Command Message ... 10
1.5.1.10 Control Primitive ... 10
1.5.1.11 Response Message .. 10
1.5.1.12 NVM Subsystem ... 10
1.5.2 Keywords ... 10
1.5.2.1 mandatory .. 10
1.5.2.2 may .. 10
1.5.2.3 optional ... 10
1.5.2.4 R ... 11
1.5.2.5 reserved ... 11
1.5.2.6 shall .. 11
1.5.2.7 should ... 11

1.6 Conventions .. 11
1.6.1 Byte, Word and Dword Relationships ... 11

1.7 References ... 12

2 PHYSICAL LAYER .. 14

2.1 PCI Express .. 14
2.2 SMBus/I2C .. 14
2.3 Error Handling ... 16

3 MESSAGE TRANSPORT ... 17

3.1 MCTP Packet .. 17
3.2 MCTP Messages .. 18

3.2.1 Message Fields .. 19
3.2.1.1 Message Integrity Check .. 20
3.2.2 Packet Assembly into Messages .. 22

3.3 Error Handling ... 24

4 MESSAGE PROCESSING MODEL ... 25

4.1 Request Messages ... 25
4.2 Response Messages .. 26

4.2.1 Generic Error Response ... 27
4.2.2 Invalid Parameter Error Response ... 28

4.3 Command Processing Model ... 29
4.4 Control Primitives .. 31

4.4.1 Pause ... 33
4.4.2 Resume .. 33

NVM Express Management Interface 1.0

4

4.4.3 Abort ... 34
4.4.4 Get State .. 35
4.4.5 Replay .. 39

4.5 Error Handling ... 40
4.5.1 Command Timeouts ... 40
4.5.2 Control Primitive Timeouts ... 41

5 MANAGEMENT INTERFACE COMMAND SET .. 42

5.1 Configuration Get .. 43
5.1.1 SMBus/I2C Frequency (Configuration Identifier 01h) ... 44
5.1.2 Health Status Change (Configuration Identifier 02h) .. 45
5.1.3 MCTP Transmission Unit Size (Configuration Identifier 03h) ... 45

5.2 Configuration Set .. 46
5.2.1 SMBus/I2C Frequency (Configuration Identifier 01h) ... 46
5.2.2 Health Status Change (Configuration Identifier 02h) .. 47
5.2.3 MCTP Transmission Unit Size (Configuration Identifier 03h) ... 48

5.3 Controller Health Status Poll .. 49
5.4 NVM Subsystem Health Status Poll ... 52
5.5 Read NVMe-MI Data Structure ... 54
5.6 Reset .. 60
5.7 VPD Read ... 60
5.8 VPD Write ... 61

6 NVM EXPRESS ADMIN COMMAND SET ... 63

6.1 Request and Response Data ... 67
6.2 Status .. 67

7 PCIE COMMAND SET (OPTIONAL) .. 69

7.1 PCIe Configuration Read .. 72
7.2 PCIe Configuration Write .. 72
7.3 PCIe I/O Read .. 73
7.4 PCIe I/O Write ... 74
7.5 PCIe Memory Read .. 75
7.6 PCIe Memory Write .. 76

8 NVM EXPRESS MANAGEMENT ENHANCEMENTS ... 78

8.1 Identify Controller .. 78
8.2 Management Interface Specific Features ... 78

8.2.1 Controller Metadata .. 78
8.2.2 Namespace Metadata .. 81

9 MANAGEMENT ARCHITECTURE .. 83

9.1 Operational Times .. 83
9.2 Vital Product Data ... 85

9.2.1 Common Header .. 85
9.2.2 Product Info Area (offset 8 bytes) ... 86
9.2.3 NVMe MultiRecord Area ... 87
9.2.4 NVMe PCIe Port MultiRecord Area .. 88

9.3 Reset .. 90
9.3.1 NVM Subsystem Reset .. 90
9.3.2 Controller Level Reset .. 90
9.3.3 Management Endpoint Reset ... 91

9.4 Security ... 91

NVM Express Management Interface 1.0

5

APPENDIX A – TECHNICAL NOTE: NVM EXPRESS BASIC MANAGEMENT COMMAND 92

APPENDIX B – EXAMPLE MCTP MESSAGES & MESSAGE INTEGRITY CHECK 96

NVM Express Management Interface 1.0

6

1 Introduction

1.1 Overview

NVM Express (NVMe) is a register-level interface that allows in-band host software to communicate with
an NVM Subsystem. The NVMe Management Interface (NVMe-MI) allows a Management Controller to
communicate out-of-band with an NVMe NVM Subsystem over one or more external interfaces.

Since this specification builds on the NVMe specification, knowledge of NVMe is assumed.

1.2 Scope

This specification defines an architecture and command set for out-of-band management of an NVMe NVM
Subsystem.

NVMe-MI has the following key capabilities:

 Discover devices that are present and learn capabilities of each device

 Store data about the host environment enabling a Management Controller to query the data later

 Health and temperature monitoring

 Multiple Command Slots to prevent a long latency command from blocking monitoring operations

 Processor and operating system agnostic

 A standard format for VPD and defined mechanisms to read/write VPD contents

 Preserves data at rest security

1.2.1 Outside of Scope

The architecture and command set are specified apart from any usage model. This specification does not
specify whether NVMe is used to implement a solid-state drive, a main memory, a cache memory, a backup
memory, a redundant memory, etc. Specific usage models are outside the scope, optional, and not
licensed.

This interface is NVM technology agnostic and is specified at a level that abstracts implementation details
associated with any specific NVM technology. For example, NAND wear leveling, block erases, and other
management tasks are abstracted.

The implementation or use of other published specifications referred to in this specification, even if required
for compliance with the specification, are outside the scope of this specification (e.g., PCI Express,
SMBus/I2C and MCTP).

The management of NVMe FRUs containing multiple architecturally visible NVM subsystems is outside the
scope of this specification.This specification does not define new security mechanisms.

This specification does not cover management of non-transparent bridges, PCIe switches or management
using any interface other than MCTP over PCIe VDM or SMBus/I2C. Co-ordination between multiple
Management Controllers or a Management Controller and a device other than a Management Endpoint is
outside the scope of this specification.

Coordinating concurrency resulting from operations associated with multiple Management Endpoints or
between a host and Management Endpoint operations is outside the scope of this specification.

1.3 Theory of Operation

NVMe-MI is designed to provide a common interface over multiple physical layers (i.e., PCI Express,
SMBus/I2C) for inventory, monitoring, configuration, and change management. The interface provides the
flexibility necessary to manage NVM Subsystems using an out-of-band mechanism in a variety of host
environments and systems.

NVM Express Management Interface 1.0

7

Figure 1: NVMe Management Interface Protocol Layering

NVMe-MI utilizes the Management Component Transport Protocol (MCTP) as the command transport and
utilizes existing MCTP SMBus/I2C and PCIe bindings for the physical layer. MCTP commands are
submitted to one of two Command Slots associated with each Management Endpoint.

1.4 Architectural Model

An NVMe storage device, such as a PCIe SSD, that implements this specification, consists of an NVMe
NVM Subsystem with one or more PCIe ports and an optional SMBus/I2C port. Each port has a Port
Identifier that is less than or equal to the Number of Ports (NUMP) field value in the NVM Subsystem
Information Data Structure. The port identifier for a PCIe port is the same as the Port Number field in the
PCIe Link Capabilities Register.

NVMe-MI supports Vital Product Data (VPD) that utilizes the format defined in the IPMI Platform
Management FRU Information Storage Definition and is stored in a FRU Information Device. The FRU
Information Device may be implemented in the NVM Subsystem, in an external device (e.g., serial
EEPROM), or a combination of the two. The VPD is accessible over any port that supports NVMe-MI using
MCTP commands. If the NVMe storage device has an SMBus/I2C interface, then the VPD is accessible
using the access mechanism over I2C as defined in the IPMI Platform Management FRU Information
Storage Definition.

Figure 2 illustrates a single-port PCIe SSD with the FRU Information Device implemented by the NVM
Subsystem. Figure 3 illustrates a dual-port PCIe SSD with an SMBus/I2C port and a FRU Information
Device implemented using a Serial EEPROM.

Management

Applications (e.g.,

Remote Console)

SMBus/I2C PCIe VDM

MCTP over

SMBus/I2C Binding

MCTP over

PCIe Binding

Management Component Transport Protocol (MCTP)

NVMe Management Interface

Management Controller

(BMC or Host Processor)

Management Applications (e.g., Remote Console)

Physical

Layer

Transport

Layer

Protocol

Layer

Application

Layer

Management

Applications (e.g.,

Remote Console)

NVM Express Management Interface 1.0

8

Figure 2: Single-Port PCIe SSD

NVM Subsystem

PCIe SSD

PCIe

Port

Figure 3: Dual-Port PCIe SSD with SMBus/I2C

NVM Subsystem

PCIe

Port 0

PCIe SSD

PCIe

Port 1

Serial

EEPROM

SMBus/I2C

The NVMe Management Interface is used to send Command Messages which consist of standard NVMe
Admin Commands that target a Controller within the NVM Subsystem; commands that provide access to
the PCI Express configuration, I/O, and memory spaces of a Controller in the NVM Subsystem; and
Management Interface specific commands for inventorying, configuring and monitoring of the NVM
Subsystem. Each Management Endpoints advertises its unique capabilities. All Management Endpoints
may support the same commands even though PCIe ports are full duplex with much higher data rates than
SMBus (i.e., both SMBus/I2C and PCIe VDM are capable of providing the same functionality).

The PCIe ports and SMBus/I2C port of an NVM Subsystem may optionally each contain a single NVMe
Management Endpoint (hereafter referred to as simply Management Endpoint). A Management Endpoint
is an MCTP endpoint that is the terminus and origin of MCTP packets/messages and is responsible for
implementing the MCTP Base Protocol, processing MCTP Control Messages, and internal routing of
Command Messages.

Each NVMe Controller in the NVM Subsystem shall provide an NVMe Controller Management Interface
(hereafter referred to as simply Controller Management Interface). The Controller Management Interface
executes Controller operations on behalf of any Management Endpoint in the NVM Subsystem.
Management Endpoints may route commands to any NVMe Controller in the NVM Subsystem. A Controller
Management Interface logically executes one operation at a time. A Controller Management Interface is
not precluded from executing two or more operations in parallel; however, there shall always be an
equivalent pattern of sequential operations with the same results.

Figure 4 illustrates an example NVM Subsystem corresponding to the PCIe SSD shown in Figure 2. The
NVM Subsystem contains a single Controller and there is a Management Endpoint associated with the
PCIe port.

NVM Express Management Interface 1.0

9

Figure 4: NVM Subsystem Associated with Single Ported PCIe SSD

NVMe Controller

PCI Function 0

Management

Endpoint

NVM Subsystem

Controller

Management Interface

PCIe

Port

Figure 5 illustrates an example NVM Subsystem corresponding to the PCIe SSD shown in Figure 3. The
NVM Subsystem contains one Controller associated with PCIe Port 0 and two Controllers associated with
PCIe Port 1. There is a Management Endpoint associated with the each PCIe port and the SMBus/I2C port.
Since the NVM Subsystem contains a Management Endpoint, all Controllers have an associated Controller
Management Interface.

Figure 5: NVM Subsystem Associated with Dual Ported PCIe SSD with SMBus/I2C

NVMe Controller

PCI Function 0

Management

Endpoint

NVM Subsystem

Controller

Management Interface

PCIe

Port 0

NVMe Controller

PCI Function 0

Management

Endpoint

Controller

Management Interface

PCIe

Port 1

Management

Endpoint
SMBus/I2C

NVMe Controller

PCI Function 1

Controller

Management Interface

Management Interface Request Messages and Response Messages are transported as MCTP messages
with the Message Type set to NVM Express Management Messages over MCTP (refer to the MCTP IDs
and Codes specification). All Command Messages originate with the Management Controller and result in
a Response Message from the Management Endpoint.

1.5 Conventions

Hardware shall return zero for all bits, fields, and registers that are marked as reserved. The Management
Controller should not rely on a value of zero being returned as future revisions of this specification may
contain non-zero values. The Management Controller should write all reserved bits and registers with the
value of zero. Future revisions of this specification may rely on a zero value being written for backward
compatibility.

Some fields or registers are 0’s based values. In a 0’s based value, the value of 0h corresponds to 1; other
values similarly correspond to the value+1.

1.5.1 Definitions

1.5.1.1 Controller or NVMe Controller

Refer to the NVM Express specification

NVM Express Management Interface 1.0

10

1.5.1.2 Controller Management Interface or NVMe Controller Management Interface

An interface associated with each NVMe Controller in the NVM Subsystem that is responsible for executing
management operations on behalf of a Management Endpoint.

1.5.1.3 Management Controller

A device (e.g., BMC) responsible for platform management that uses the NVM Express Management
Interface to communicate to Management Endpoints.

1.5.1.4 Management Endpoint or NVMe Management Endpoint

An MCTP endpoint associated with an NVM Subsystem (e.g., an NVMe SSD) that is the terminus and origin
of MCTP packets/messages and which processes Request Messages.

1.5.1.5 VPD or Vital Product Data

Field Replaceable Unit (FRU) Information which may be stored in a FRU Information Device.

1.5.1.6 FRU Information Device

A storage device (e.g., serial EEPROM) used to store Vital Product Data.

1.5.1.7 Command Slot

A logical target within a Management Endpoint where a Management Controller sends a Request Message.
Each Management Endpoint has exactly two Command Slots.

1.5.1.8 Request Message

An MCTP message originating from a Management Controller. A Request Message may be a Command
Message, a Control Primitive, or another type of MCTP message.

1.5.1.9 Command Message

A type of Request Message that contains an NVMe Admin Command, PCIe Command, or NVMe-MI
Command.

1.5.1.10 Control Primitive

A type of Request Message that may be sent while a Command Slot is processing a Command Message.
A single packet MCTP message used to convey an NVMe-MI control request.

1.5.1.11 Response Message

An MCTP message originating from a Management Endpoint in response to a Request Message.

1.5.1.12 NVM Subsystem

Refer to the NVM Express specification.

1.5.2 Keywords

Several keywords are used to differentiate between different levels of requirements.

1.5.2.1 mandatory

A keyword indicating items to be implemented as defined by this specification.

1.5.2.2 may

A keyword that indicates flexibility of choice with no implied preference.

1.5.2.3 optional

A keyword that describes features that are not required by this specification. However, if any optional
feature defined by the specification is implemented, the feature shall be implemented in the way defined by

NVM Express Management Interface 1.0

11

the specification.

1.5.2.4 R

“R” is used as an abbreviation for “reserved” when the figure or table does not provide sufficient space for
the full word “reserved”.

1.5.2.5 reserved

A keyword indicating reserved bits, bytes, words, fields, and opcode values that are set-aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other
specifications. A reserved bit, byte, word, field, or register shall be cleared to zero, or in accordance with a
future extension to this specification. The recipient shall not check the value of reserved bits, bytes, words,
or fields.

1.5.2.6 shall

A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory
requirements to ensure interoperability with other products that conform to the specification.

1.5.2.7 should

A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “it is
recommended”.

1.6 Conventions

A 0-based value is a numbering scheme for which the number 0h actually corresponds to a value of 1h and
thus produces the pattern of 0h = 1h, 1h = 2h, 2h = 3h, etc. In this numbering scheme, there is not a
method for specifying the value of 0h.

Some parameters are defined as a string of ASCII or UTF-8 characters. ASCII data fields shall contain only
code values 20h through 7Eh. UTF-8 is backwards compatible with ASCII encoding and supports additional
characters with variable length encoding. For the string “Copyright”, the character “C” is the first byte, the
character “o” is the second byte, etc. The string is left justified and shall be padded with spaces (ASCII
character 20h) to the right if necessary.

1.6.1 Byte, Word and Dword Relationships

Figure 6 illustrates the relationship between bytes, words and Dwords. This specification specifies data in
a little endian format.

NVM Express Management Interface 1.0

12

Figure 6: Byte, word and Dword Relationships

7

6

5

4

3

2

1

0 bit

 byte

 1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0 bit

 word

 byte 1 byte 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0 bit

 Dword

word 1 word 0 word

byte 3 byte 2 byte 1 byte 0 byte

1.7 References

I2C Bus specification, revision 6.0. http://www.i2c.org

IPMI Platform Management FRU Information Storage Definition 1.0, Version 1.2. Available from
http://www.intel.com

MCTP Base Specification (DSP0236), version 1.2.1. Available from http://www.dmtf.org.

http://www.intel.com/
http://www.dmtf.org/

NVM Express Management Interface 1.0

13

MCTP IDs and Codes (DSP0239), version 1.3.0. Available from http://dmtf.org.

MCTP PCIe VDM Transport Binding Specification (DSP0238), version 1.0.2. Available from
http://www.dmtf.org.

MCTP SMBus/I2C Transport Binding Specification (DSP0237), version 1.0.0. Available from
http://www.dmtf.org.

NVM Express specification, revision 1.2. Available from http://www.nvmexpress.org

NVMe™ (NVM Express™) Management Messages over MCTP Binding specification (DSP0235),
revision 1.0.0. Available from http://www.dmtf.org.

PCI specification, revision 3.0. Available from http://www.pcisig.com.

PCI Express specification, revision 3.1. Available from http://www.pcisig.com.

System Management Bus (SMBus) Specification, revision 3.0. Available from http://www.smbus.org.

http://dmtf.org/
http://www.dmtf.org/
http://www.dmtf.org/
http://www.nvmexpress.org/
http://www.dmtf.org/
http://www.pcisig.com/
http://www.pcisig.com/
http://www.smbus.org/

NVM Express Management Interface 1.0

14

2 Physical Layer

This section describes the physical layers supported by NVMe-MI. An implementation may support zero or
more PCIe ports and an optional SMBus/I2C port. An implementation shall support at least one port.

2.1 PCI Express

A PCIe port in an NVM subsystem may implement a Management Endpoint. If the PCIe port implements
a Management Endpoint, the PCIe port shall support MCTP over PCIe Vendor Defined Messages (VDMs)
as specified by the Management Component Transport Protocol (MCTP) PCIe VDM Transport Binding
Specification.

2.2 SMBus/I2C

If the NVM Subsystem implements an SMBus/I2C interface and associated with that SMBus/I2C interface
is a Management Endpoint, then the interface shall support MCTP over SMBus/I2C as specified by the
Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification.

If the NVM Subsystem implements an SMBus/I2C interface, then the NVM Subsystem may optionally
support the NVMe Basic Management Command for health and status polling. The NVMe Basic
Management Command is defined in Appendix A – Technical Note: NVM Express Basic Management
Command. It is possible to support both MCTP and the Basic Management Command.

The SMBus/I2C Management Endpoint shall be accessible at a power-up SMBus/I2C address of 0x3A and
should be SMBus ARP-capable (as defined in the SMBus 3.0 specification).1 If the NVM Subsystem is
“Discoverable” (as defined in the SMBus 3.0 specification), the device shall issue a “Notify ARP Master”
command when the NVM Subsystem is ready to communicate.

If the NVM Subsystem implements an SMBus/I2C interface, then VPD information shall be accessible from
the Management Endpoint using Sequential Read and Random Read operations as defined by the IPMI
Platform Management FRU Information Storage Definition specification.

The VPD shall be accessible using I2C read operations from a FRU Information Device at a power-up
SMBus/I2C address of 0xA6 and should be SMBus ARP-capable (as defined in the SMBus 3.0
specification).2 If the FRU Information Device is “Discoverable” (as defined in the SMBus 3.0 specification),
it shall issue a “Notify ARP Master” command when the FRU Information Device is ready to communicate.

If ARP is supported, then the SMBus/I2C Management Endpoint and VPD shall both use the SMBus
Address Resolution Protocol Unique Device Identifier (UDID) shown in Figure 7. The only difference
between the NVM Subsystem and FRU Information Device UDID is the most significant bit of the Vendor
Specific ID. This fact may be used by the MCTP bus owner to associate an SMBus/I2C Management
Endpoint with its corresponding VPD.

Clock stretching is allowed by the Management Controller, Management Endpoint, and the VPD. However,
implementations are strongly discouraged from using clock stretching so that communications are more
predictable with higher throughput.

When a NACK is received, a Management Endpoint shall follow the MCTP specification for a non-bridge
endpoint. The Management Endpoint treats a STOP condition due to excessive SMBus NACKs as an

1 The address 3Ah appears on SMBus as 0b0011_101x where x represents the SMBus read/write bit.
2 The address A6h appears on SMBus as 0b1010_011x where x represents the SMBus read/write bit.

NVM Express Management Interface 1.0

15

implicit Pause Control Primitive. Refer to 4.4.

Figure 7: NVM Subsystem and FRU Information Device SMBus UDID

Bits Field Description

127:120
Device

Capabilties

This field describes the device capabilities

Bits Description

7:6
Address Type: This field describes the type of address contained in the

device. Refer to the SMBus transport binding specification.

5:1 Reserved

0
PEC Supported: All MCTP transactions shall include a Packet Error Code

(PEC) byte. This field shall be set to one to indicate support for PEC.

119:112
Version /
Revision

This field is used to identify the UDID version and silicon revision.

Bits Description

7:6 Reserved

5:3 UDID Version. This field specifies the UDID version and shall be set to 001b

2:0
Silicon Revision ID: This field is used to specify a vendor specific silicon

revision level.

111:96 Vendor ID This field contains the PCI-SIG vendor ID for the Management Endpoint.

95:80 Device ID This field contains a vendor assigned device ID for the Management Endpoint.

79:64 Interface

This field defines the SMBus version and the Interface Protocols supported.

Bits Description

15:8 Reserved

7 ZONE. This field shall be cleared to ‘0’.

6 IPMI. This field shall be cleared to ‘0’.

5
ASF. This field shall be set to ‘1’. Refer to the MCTP transport binding

specification.

4 OEM. This field shall be set to ‘1'.

3:0
SMBus Version. This field shall be set to 4h or 5h which corresponds to

SMBus Version 2.0 and 3.0 respectively.

63:48
Subsystem
Vendor ID

This field contains the PCI-SIG vendor ID for the Management Endpoint.

47:32
Subsystem
Device ID

This field contains a vendor assigned device ID for the Management Endpoint.

31:0
Vendor

Specific ID

This field contains a unique 30-bit static NVM storage device ID and is used to distinguish
the NVM Subsystem UDID from the FRU Information Device UDID.

Bits Description

31

UDID Type. This field is used to distinguish the Management Endpoint UDID

from the VPD UDID. A ‘1’ in this field indicates the Management Endpoint. A
‘0’ in this field indicates the FRU Information Device.

30 Reserved.

29:0

Unique NVM Storage Device ID: This field contains a unique vendor

assigned ID for the NVM Subsystem. The ID is different in each NVM
Subsysteminstance and remains static during the life of the device.

Host platforms expecting to be used with one or more Management Endpoints (e.g., data center platforms
and workstations) should isolate SMBus segments to avoid a Management Endpoint conflicting with the
address of another SMBus device. An SMBus address conflict may occur when a Management Endpoint
is used with platforms that do not isolate SMBus segments (e.g., some client platforms).

NVM Express Management Interface 1.0

16

2.3 Error Handling

Physical layer errors are handled as specified by the corresponding physical layer specification and MCTP
transport binding specification. There are no NVMe-MI physical layer specific error handling requirements
beyond those outlined in these specifications.

NVM Express Management Interface 1.0

17

3 Message Transport

NVMe-MI utilizes MCTP as a reliable in-order message transport between a Management Controller and a
Management Endpoint.

This section summarizes the NVMe-MI MCTP packet and message format. A Management Endpoint
compliant to this specification shall implement all required behaviors detailed in the Management
Component Transport Protocol (MCTP) Base Specification and corresponding transport binding
specification in addition to the requirements outlined in this specification (e.g., the Message Integrity Check
algorithm).

3.1 MCTP Packet

In MCTP, the smallest unit of data transfer is the MCTP packet. One or more packets are combined to
create an MCTP message. A packet always contains at least 1 byte of payload but the total length shall
never exceed the negotiated MCTP Transmission Unit Size. The format of an MCTP packet is shown in
Figure 8.

Figure 8: MCTP Packet Format

Physical Medium Specific Header

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Header
VersionReserved

Destination
Endpoint ID

Source
Endpoint ID

Pkt
Seq

#

Msg
tag

T
O

E
O
M

S
O
M

Packet Payload

Physical Medium Specific Trailer

Dwords
0 to (N-1)

DWord N

>

>

>

DWords
(N+1)

to
(M-1)

DWords
M
to

(P-1)

>

Physical Medium Specific

MCTP Packet Header

MCTP Packet Payload

MCTP Packet
Header

MCTP specifications use big endian byte ordering while NVM Express specifications use little endian byte
ordering. All figures in this specification are illustrated with little endian byte ordering. Note that this pictorial
representation does not change the order that bytes are sent out on the physical layer.

The Physical Medium-Specific Header and Physical Medium-Specific Trailer are defined by the MCTP
transport binding specification utilized by the port. Refer to the MCTP transport binding specifications.

The Management Component Transport Protocol (MCTP) Base Specification defines the MCTP packet
header (refer to DSP0236 for field descriptions). The fields of an MCTP Packet are shown in Figure 9.

NVM Express Management Interface 1.0

18

Figure 9: MCTP Packet Fields

Field Name Field Size

Medium-Specific Header varies

Header Version 4 bits

Reserved 4 bits

Destination Endpoint ID 8 bits

Source Endpoint ID 8 bits

Msg tag (Message Tag) 3 bits

TO 1 bit

Pkt Seq # 2 bits

EOM 1 bit

SOM 1 bit

Packet Payload varies

Medium-Specific Trailer varies

A compliant Management Endpoint shall implement all MCTP required features defined in the MCTP base
specification. Optional features may be supported.

3.2 MCTP Messages

An MCTP message consist of the payload of one or more MCTP packets. The maximum sized message is
4224 bytes (4K + 128). Refer to the NVMe Management Messages over MCTP Binding Specification.
Messages with lengths greater than 4224 are considered invalid messages. The format of an NVMe-MI
MCTP message is shown in Figure 10.

Figure 10: NVMe-MI MCTP Message

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Message Integrity Check

Dword 0 >

Dword N >

>

Dwords
1
to

(N-1)

Message Data

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved
Message
Header

Message
Body

NVM Express Management Interface 1.0

19

3.2.1 Message Fields

The format of an NVMe-MI message consists of a Message Header in the first Dword, followed by the
Message Data, and ends with the Message Integrity Check Dword as shown in Figure 10.

The Message Header contains a Message Type (MT) field and an Integrity Check (IC) field that are defined
by the MCTP Base Specification. The Message Type field specifies the type of payload contained in the
message body and is required to be set to 4h in all messages associated with NVMe-MI (refer to the MCTP
IDs and Codes specification). The Integrity Check (IC) field indicates whether the message is covered by
an overall MCTP Message Integrity Check. All NVMe-MI messages are protected by a 32-bit CRC
computed over the message body contents. The IC field shall be set to ‘1’ in all NVMe-MI MCTP messages.

The Request or Response (ROR) bit in the Message Header specifies whether the NVMe-MI MCTP
message is associated with a Request Message or a Response Message. The NVMe Message Type
(NMIMT) field specifies whether the Request Message is a Control Primitive or a specific type of
Command Message (refer to Figure 14). Finally the Command Slot Identifier (CSI) field specifies the
Command Slot with which the message is associated. Refer to section 4 for additional information about
Command Slots.

NVM Express Management Interface 1.0

20

Figure 11: NVMe-MI MCTP Message Fields

Byte Description

0

Bits Description

7

Integrity Check (IC): This field is defined by the MCTP Base Specification and
indicates whether the MCTP message is covered by an overall MCTP Message
Integrity Check.
All NVMe-MI messages are protected by a CRC and thus this bit shall be set to ‘1’
in all NVMe-MI messages.

6:0
Message Type (MT): This field is defined by the MCTP Base Specification for the
message type. This field shall be set to 4h in all NVMe-MI messages. Refer to
MCTP IDs and Codes .

1

Bits Description

7
Request or Response (ROR): This field indicates whether the message is a
Request Message or Response Message. This field is cleared to ‘0’ for Request
Messages. This field is set to ‘1’ for Response Messages.

6:3

NVMe-MI Message Type (NMIMT): This field specifies the NVMe-MI Message
Type.

Value Description

0h Control Primitive – refer to section 4.4

1h NVMe-MI Command – refer to section 5

2h NVMe Admin Command – refer to section 6

3h Reserved

4h PCIe Command – refer to section 7

5h – Fh Reserved

2:1 Reserved

0

Command Slot Identifier (CSI): This field indicates the Command Slot with which
the message is associated. For Request Messages this field indicates the
Command Slot with which the Request Message is associated. For Response
Messages, this field indicates the Command Slot associated with the Request
Message with which the Response Message is associated.

Value Description

0h Command Slot 0

1h Command Slot 1

3:2 Reserved

x-1:4
Message Data (DATA): This field contains the NVMe-MI message payload. The format of this
field depends on the NVMe-MI Message Type.

x+3:x
Message Integrity Check (MIC): This field contains a CRC computed over the contents of
the message. Refer to section 3.2.1.1.

3.2.1.1 Message Integrity Check

The Message Integrity Check field contains a 32-bit CRC computed over the contents of the NVMe-MI
message. The 32-bit CRC used by NVMe-MI is CRC-32C (Castagnoli) which uses the generator polynomial
1EDC6F41h. The Message Integrity Check is calculated using the following RocksoftTM Model CRC
Algorithm parameters:

 Name : "CRC-32C"

NVM Express Management Interface 1.0

21

 Width : 32

 Poly : 1EDC6F41h

 Init : FFFFFFFFh

 RefIn : True

 RefOut : True

 XorOut : FFFFFFFFh

 Check : E3069283h

When sending a message, the Message Integrity Check shall be calculated using the following procedure
or a procedure that produces an equivalent result:

1. Initialize the CRC register to FFFFFFFFh. This is equivalent to inverting the lowest 32 bits of the
NVMe-MI Message (Dword 0 in Figure 10).

2. Append 32 bits of 0’s to the end of the Message Data to allow room for the Message Integrity Check
(Dword N in Figure 10). This results in the Message Body shown in Figure 10 with the Message
Integrity Check field cleared to 0h.

3. Map the bits in the Message Body from step 2 to the coefficients of the message polynomial M(x).
Assume the length of M(x) is Y bytes. Bit 0 of byte 0 in the Message Body is the most significant
bit of M(x), followed by bit 1 of byte 0, on through to bit 7 of byte Y - 1. Note that the bits within
each byte are reflected (i.e., bit n of each byte is mapped to bit (7 - n) resulting in bit 7 to bit 0, bit
6 to bit 1, and so on).

Figure 12: Message Integrity Check Example

 Message Body (Length = Y bytes)

 Byte 0 Byte 1 … Byte Y - 1

M(x) = 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 … 0 1 2 3 4 5 6 7

4. Divide the polynomial M(x) by the generator polynomial 1EDC6F41h to produce the 32-bit
remainder polynomial R(x).

5. Reflect R(x) (i.e. bit n of each byte is mapped to bit (31 - n) resulting in bit 31 to bit 0, bit 30 to bit
1, and so on) to produce the polynomial R′(x).

6. Invert R′(x) to produce the polynomial R′′(x).
7. Store R′′(x) in the Message Integrity Check field of the Message Body.

Upon receipt of an NVMe-MI message, the Message Integrity Check may be validated as follows:

1. Save the received Message Integrity Check.
2. Initialize the CRC register to FFFFFFFFh. This is equivalent to inverting the lowest 32 bits of the

NVMe-MI Message (Dword 0 in Figure 10).
3. Clear the Message Integrity Check field to 0h.
4. Map the bits in the Message Body to the coefficients of the message polynomial M(x) as described

in step 3 in the Message Integrity Check calculation procedure above.
5. Divide the polynomial M(x) by the generator polynomial 1EDC6F41h to produce the 32-bit

remainder polynomial R(x).
6. Reflect R(x) (i.e. bit n of each byte is mapped to bit (31 - n) resulting in bit 31 to bit 0, bit 30 to bit

1, and so on) to produce the polynomial R′(x).
7. Invert R′(x) to produce the polynomial R′′(x).
8. Compare R′′(x) from step 5 to the Message Integrity Check value saved in step 1. If both values

are equal, the Message Integrity Check passes.

NVM Express Management Interface 1.0

22

Refer to Appendix B for artificial messages and their corresponding Message Integrity Check values.

3.2.2 Packet Assembly into Messages

An NVMe-MI MCTP message may be split into multiple MCTP Packet Payloads and sent as a series of
packets. An example message whose contents are split across four MCTP packets is shown in Figure 13.
Refer to the MCTP Base Specification for packetization and message assembly rules.

NVM Express Management Interface 1.0

23

Figure 13: NVMe-MI MCTP Message Spanning Multiple MCTP Packets

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

1st MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

2nd MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

3rd MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

4th MCTP Packet of Message

NVMe-MI MCTP Message

Message Integrity Check

Message Header

In addition to the requirements outlined in the MCTP Base Specification and transport binding
specifications, the NVMe-MI Specification has the following additional requirements:

NVM Express Management Interface 1.0

24

 With the exception of the last packet in a message, the MCTP Transmission Unit size of all packets
in a given message shall be equal to the negotiated MCTP Transmission Unit Size.

 The MCTP Transmission Unit size of the last packet in a Request Message or Response Message
(i.e., the one with the EOM bit set in the MCTP header) shall be the smallest size needed to transfer
the MCTP Packet Payload for that Packet with no additional padding beyond any padding required
by the physical medium-specific trailer.

 Once a complete NVMe-MI MCTP message has been assembled, the Message Integrity Check is
verified. If the Message Integrity Check passes, then the message is processed. If the Message
Integrity Check fails, then the message is discarded. Refer to 4.3.

3.3 Error Handling

The Management Endpoint shall drop (silently discard) packets for error conditions as specified in the
MCTP Base Specification. Some example conditions which result in discarding packets include unexpected
middle or end packets.

NVM Express Management Interface 1.0

25

4 Message Processing Model

NVMe-MI utilizes a request and response processing model. A Management Controller sends a Request
Message to a Management Endpoint, the Management Endpoint processes the Request Message, and
when processing has completed, sends a Response Message back the Management Controller. Under no
circumstances does a Management Endpoint generate an unsolicited Response Message (i.e., a Response
Message that does not correspond to a previously received Request Message).

Figure 14 illustrates the taxonomy of NVMe-MI MCTP messages. A Request Message may be classified
as a command or a Control Primitive. Commands specify an operation to be performed by the Management
Endpoint and may be further classified as an NVMe-MI command, an NVMe Admin command, or a PCIe
command. Control Primitives are used to affect the processing of a previously issued Command and are
described in Section 4.4.

Unlike other NVMe-MI MCTP messages that may span multiple MCTP packets, messages containing a
Control Primitive shall consist of exactly one MCTP packet.

A Response Message may be classified as a success response or an error response.

Figure 14: NVMe-MI MCTP Message Taxonomy

Control
Primitive

Command Message

NVMe-MI
Command

NVMe
Command

PCIe
Command

NVMe-MI MCTP Message

Response Message

Success
Response

Request Message

Error
Response

4.1 Request Messages

Request Messages are NVMe-MI messages that are generated by a Management Controller to send to a
Management Endpoint.

Request Messages specify an action to be performed by the Management Endpoint. Request Messages
are either Control Primitives (refer to 4.4) or Command Messages. The format of the message body for a
Command Message is command set specific and is specified by the NMIMT field in the message header.

The NVMe Management Interface supports three command sets:

 The Management Interface command set is described in chapter 5.

 The NVM Express Admin command set is described in chapter 6.

 The PCIe command set is described in chapter 7.

NVM Express Management Interface 1.0

26

4.2 Response Messages

Response Messages are NVMe-MI messages that are generated when a Management Endpoint completes
processing of a previously issued Request Message.

The format of a Response Message is shown in Figure 15 and Figure 16. The first Dword contains the
NVMe-MI message header. The Status field encodes the status associated with the Response Message.
This is followed by the Response Body whose format is response status specific. Finally, the Response
Message ends with the NVMe-MI Message Integrity Check field.

Figure 15: Response Message Format

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Message Integrity Check

DWord 0 >

DWord N >

>

Dwords
1
to

(N-1)

Message TypeI
C

Response Body

R CSINVMe-MI
Msg Type

R
O
R

Reserved

Status

The CSI field in the NVMe-MI Message Header specifies the Command Slot of the Request Message with
which the Response Message is associated. The NVMe-MI Message Type (Msg Type) field contains the
value from the same field in the corresponding Request Message.

Figure 16: Response Message Fields

Byte Description

3:0 NVMe-MI Message Header: Refer to Section 3.2.

4
Status (STATUS): This field indicates the status associated with the Response Message.
Response Message Status values are summarized inFigure 17.

M-1:5
Response Body: This field contains response specific fields whose format is dependent on
the Status field.

M+3:M Message Integrity Check: Refer to Section 3.2.

Response Message Status values are summarized in Figure 17. A Response Message Status value of
Success indicates that the corresponding Request Message completed successfully and that the Response
Message is a success response. The format of the response body for a success response is dependent on
the NVMe-MI message type and is described later in this specifiation.

A Response Message Status value other that Success indicates that an error occurred during processing

NVM Express Management Interface 1.0

27

of the corresponding command and that the response is an error response. The format of the response
body is dependent on the Response Message Status value as shown in Figure 17. If multiple errors are
present, a Management Endpoint may choose which error status to report.

Figure 17: Response Message Status Values

Value Description Error Reponse Format

00h Success: The command completed successfully. Refer to 4.2.1

01h

More Processing Required: The command is in progress
and requires more time to complete processing. When this
Response Message Status value is used in a Response
Message, a subsequent message contains the result of the
Command Message. This Response Message Status
Value shall not be sent more than once per Request
Message.

Refer to 4.2.1

02h
Internal Error: The command could not be executed due
to a vendor specific internal error.

Refer to 4.2.1

03h
Invalid Command Opcode: Invalid command opcode field
value.

Refer to 4.2.1

04h
Invalid Parameter: Invalid command parameter field
value.

Refer to 4.2.2

05h

Invalid Command Size: The Command Message body
was larger or smaller than that expected by the command
due to a reason other than too much or too little input data
(e.g., the command did not contain all the required
parameters or no input data was expected but the
command message body is larger than that needed to
contain the required parameters).

The expected command message body size is determined
by the command opcode assuming no other errors are
detected (e.g., invalid opcode or invalid field).

Refer to 4.2.1

06h
Invalid Command Input Data Size: The Command
Message requires input data and contains too much or too
little input data.

Refer to 4.2.1

07h
Access Denied: A command was prohibited from being
executed due to a vendor specific protection mechanism.

Refer to 4.2.1

08h – 1Fh Reserved

20h
VPD Updates Exceeded: More updates to the VPD are
attempted than allowed.

Refer to 4.2.1

21h
PCIe Inaccessible: The PCIe functionality is not available
at this time.

Refer to 4.2.1

22h – DFh Reserved

E0h – FFh Vendor Specific Vendor Specific

4.2.1 Generic Error Response

A generic error response is generated for errors in which no additional information is provided beyond the
Response Message Status. Bytes 5 to 7 are reserved. The format of a generic error response is shown in
Figure 18.

NVM Express Management Interface 1.0

28

Figure 18: Generic Error Response

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

StatusReservedByte 4 >

Byte 8 >

4.2.2 Invalid Parameter Error Response

An invalid parameter error response is generated for error responses where the Status field is set to 03h
(i.e., Invalid Parameter). The format of an invalid parameter error response is shown in Figure 19 and the
response specific fields are summarized in Figure 20.

Figure 19: Invalid Parameter Error Response

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

StatusByte 4 >

Byte 8 >

Parameter Error Location (PEL)

NVM Express Management Interface 1.0

29

Figure 20: Invalid Parameter Error Response Fields

Byte Description

7:5

Parameter Error Location (PEL): This field indicates the byte and bit of the request
parameter within the Request Message that contains the first invalid parameter (i.e., the invalid
parameter with the lowest byte and bit).

If the invalid parameter spans multiple bytes or bits, then the location indicates the first byte
and bit of the parameter.

Bits Description

23:8
Byte in the Request Message of the parameter that contained the
error. Valid values are 0 to 4223.

7:3 Reserved

2:0
Bit in the Request Message of the parameter that contained the
error. Valid values are 0 to 7.

4.3 Command Processing Model

NVMe-MI utilizes Command Slots for command processing. Command Slots are logically used for MCTP
NVMe-MI Request Message and Response Message assembly. Together with the request/response
processing model, Command Slots provide a mechanism for message flow control. A Management
Controller should not send a new Command Message to a Command Slot until the Response Message for
the previously issued command to that Command Slot has been received.

Associated with each Management Endpoint are 2 Command Slots. Each Command Slot includes a state
and a Pause flag (refer to 4.4.4).

A Management Controller sends a Request Message to a Management Endpoint and targets a specific
Command Slot in the Management Endpoint.

When a Management Endpoint receives MCTP packets for a Command Message that target a Command
Slot, the packets are kept in a buffer associated with that Command Slot to be assembled. The Command
Slot remains allocated to the Command Message until processing of the command has completed, the
associated Response Message has been transmitted, and the Command Slot transitions back to the Idle
state.

A Command Message is the only type of multi-packet MCTP NVMe-MI message that may be received by
a Management Endpoint. The maximum number of Command Messages in flight to a Management
Endpoint is equal to the number of Command Slots. The operation of each Command Slot is independent,
allowing a Management Controller to have 2 independent streams of Command Messages to a
Management Endpoint. The Command Message associated with each Command Slot are processed in
parallel. If the NVM Subsystem implements multiple Management Endpoints, then command processing of
each Management Endpoints occurs in parallel. A NVM Subsystem that implements N Management
Endpoints may have up to 2N commands executing in parallel.

A Command Slot may be in 1 of 4 possible states. These states as well as valid state transitions are shown
in Figure 21.

NVM Express Management Interface 1.0

30

Figure 21: Command Slot State Diagram

Idle

ReceiveTransmit

Process

Start of
Command Message

Complete
Command Message

Received

Abort or
Error

Response
Required

or
Resume

Response Message
Transmitted

or
Abort

Abort
More

Processing
Required

1. Idle: The state when there is no Command Message associated with the Command Slot. This is
the default state of a Command Slot (e.g., following a reset). A Command Slot transitions from Idle
to the Receive state when the first MCTP packet of a MCTP NVMe-MI command message is
received (i.e., an MCTP packet with the SOM bit in the MCTP packet header set to ‘1’, the Message
Type set to 4h, and the CSI field set to the corresponding Command Slot Identifier).

2. Receive: The state when the first packet of a Command Message has been received and the
message is being assembled and/or validated. A Command Slot transitions from Receive to the
Idle state when an Abort Control Primitive is received, an error is detected in message assembly
(refer to 3.2.2), or the Message Integrity Check fails (refer to 3.2.1.1). A Command Slot transitions
from Receive state to the Process state when a Command Message is assembled and the
message integrity check is successful.

3. Process: The state when a Command Message is processed. Processing of a command consists
of performing the actions specified by the command or aborting the command. A Command Slot
transitions from Process to the Transmit state when a response is required (i.e., the Pause Flag is
cleared to ‘0’ and either of the following are true: all processing of the command has completed or
command processing is expected to exceed the corresponding transport binding specification
response timeout). A Command Slot transitions from the Process state to the Idle state due to an
Abort Control Primitive (refer to 4.4.3).

4. Transmit: The state in which a Response Message for the Command Message is transmitted to
the Management Controller. A Command Slot transitions from the Transmit to the Idle state once
the entire MCTP message associated with the response to the command has been transmitted on
the physical medium or due to an Abort Control Primitive (refer to 4.4.3). If command processing
did not complete in the Process state, then the Management Endpoint transmits a response with
status More Processing Required and the Command Slot transitions back to the Process state.

Receiving a new Command Message "start" packet (packet with SOM = 1b) to the same Command Slot
while a Command Message is being assembled (i.e., in the Receive state) terminates the original message

NVM Express Management Interface 1.0

31

assembly. All data for the terminated Command Message is discarded. The newly received start packet is
not dropped, but instead it begins a new message assembly. This is considered receiving a Command
Message to a non-Idle Command Slot (CMNICS). Refer to section 4.4.4.

If a Command Message packet is received when the corresponding Command Slot is in the Process or
Transmit state, then the Management Endpoint discards the Command Message packet without a
response. This is also considered receiving a Command Message to a non-Idle Command Slot (CMNICS).
Refer to section 4.4.4.

4.4 Control Primitives

Control Primitives are Request Messages sent from a Management Controller to a Management Endpoint
to affect the command processing flow. Control Primitives may target a Command Slot. Unlike Command
Messages, Control Primitives may be sent while the Command Slot is any state and are processed
immediately by the Management Endpoint. Unless otherwise indicated, Control Primitives do not change
the state of the Command Slot.

The format of a Control Primitive is shown in Figure 22 and the fields are described in Figure 23.

Figure 22: Control Primitive Request Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Dword 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Control Primitive Opcode
(CPO)Dword 1 >

Dword 2 >

Tag (TAG)Control Primitive Specific Parameter (CPSP)

Figure 23: Control Primitive Request Message Fields

Byte Description

03:00 NVMe-MI Message Header: Refer to Section 3.2.

04
Control Primitive Opcode (CPO): This field specifies the opcode of the Control Primitive to be

executed. Refer to Figure 24.

05

Tag (TAG): This field contains an opaque value that is sent from the Management Controller in the

Control Primitive Request Message and returned by the Management Endpoint in to the associated
response. A Management Controller may use any value in this field.

07:06
Control Primitive Specific Parameter (CPSP): This field is used to to pass Control Primitive specific

parameter information.

Figure 24: Opcodes for Control Primitives

Opcode O/M1 Command

00h M Pause

01h M Resume

02h M Abort

03h M Get State

04h M Replay

05h - EFh Reserved

NVM Express Management Interface 1.0

32

Opcode O/M1 Command

F0h - FFh O Vendor Specific

NOTES:
1. Optional or Mandatory; O – optional and M - mandatory

The format of a success response associated with a Control Primitive is shown in Figure 25 and the fields
are described in Figure 26.

Figure 25: Control Primitive Success Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Dword 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

StatusDword 1 >

Dword 2 >

Control Primitive Specific Response (CPSR) Tag (TAG)

Figure 26: Control Primitive Success Response Message Fields

Byte Description

03:00 NVMe-MI Message Header: Refer to Section 3.2.

04 Status: Refer to Section 4.2.

05

Tag (TAG): This field contains an opaque value that is passed by the Management Endpoint from the

Control Primitive to the associated Response Message. The Response Message contains the same
value in this field as the corresponsing Request Message.

07:06
Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific

status.

A Management Endpoint transmits a Response Message to the Management Controller when the actions
associated with that Control Primitive have completed.

Unlike Command Messages, a Management Controller may issue a Control Primitive to a Command Slot
without waiting for a response for previously issued Control Primitives to that Command Slot. If multiple
Control Primitives are sent without waiting for responses from the Management Endpoint, only the actions
and response associated with the last Control Primitive are guaranteed (i.e., the actions associated with
previously issued but unacknowledged Control Primitives may or may not be performed and the Response
Messages for previously issued but unacknowledged Control Primitives may or may not be transmitted).
Receipt of a Control Primitive never corrupts a previous Control Primitive associated with the Command
Slot. The Response Message is either entirely transmitted or discarded.

The TAG field is an opaque value copied from the Control Primitive Request Message into the Response
Message. By using unique TAG values it is possible for the Management Controller to link Response
Messages with Request Messages.

NVM Express Management Interface 1.0

33

4.4.1 Pause

The Pause Control Primitive is used to suspend response transmission and suspend the timeout waiting
for packet for both Command Slots in a Management Endpoint. The CSI field in a Pause Control Primitive
is not used and shall be cleared to ‘0’.

Associated with each Command Slot is a Pause Flag that determines whether the slot is ‘paused.’ The
Pause Flag status is included with a success Response Message, and may also be read using the Get
State primitive.

The CPSP field for the Pause primitive is reserved.

The format of the CPSR field in the Control Primitive success Response Message is shown in Figure 27.

Figure 27: Pause Control Primitive Success Response Message Fields

Byte Description

08:07

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive

specific status.

Bits Description

15:02 Reserved

01

Pause Flag Status Slot 1 (PFSS1): This field indicates whether or not

Command Slot 1 is paused after completing the Pause primitive. A ‘1’ in this
field indicates the Command Slot is paused. A ‘0’ in this field indicates the
Command Slot is not paused.

00

Pause Flag Status Slot 0 (PFSS0): This field indicates whether or not

Command Slot 0 is paused after completing the Pause primitive. A ‘1’ in this
field indicates the Command Slot is paused. A ‘0’ in this field indicates the
Command Slot is not paused.

The result of a Pause Control Primitive on a Command Slot is dependent on the state of the Command Slot
when the Pause Control Primitive is received, as described below:

Idle: The Pause primitive has no effect, and the Pause Flag is not changed (i.e., remains cleared to
‘0’). Refer to 4.4.4.

Receive: The Pause primitive sets the Pause Flag to ‘1’ (refer to 4.4.4) and alerts the Management
Endpoint that remaining MCTP packets associated with the command may be delayed. Further packets
sent to this Command Slot while the Pause Flag is set are received normally.

Process: The Pause primitive sets the Pause Flag to ‘1’ (refer to 4.4.4) causing the Command Slot to
remain in the Process state until a Resume Control Primitive is received. Pause has no effect on the
command processing in the Command Slot. Though command processing may complete, the
Command Slot shall not transition to the Transmit state.

Transmit: The Pause primitive sets the Pause Flag to ‘1’ (refer to 4.4.4) suspending transmission of
MCTP response packets associated on a packet boundary with the Command in the Command Slot.

The Management Endpoint shall transmit a Response Message with success status after receiving the
Pause primitive. It is not an error to issue a Pause Control Primitive when a Command Slot is already
paused.

While the Pause Flag is set, the Management Endpoint disables the timeout waiting for packet timer and
does not transmit responses to commands. The timeout waiting for a packet is the lesser of 100ms or the
time defined in the appropriate MCTP transport binding specification. The Management Controller should
not send commands while a Management Endpoint is paused.

4.4.2 Resume

The Resume Control Primitive is used to resume from a paused state. This is the complement to the Pause

NVM Express Management Interface 1.0

34

Control Primitive.

Like the Pause Control Primitive, the Resume Control Primitive affects both slots and the CSI field in a
Resume Control Primitive shall be cleared to ‘0’. If a Command Slot was not paused before receiving the
Resume primitive, the Resume primitive completes successfully and has no effect.

The CPSP field for the Resume primitive is reserved. The CPSR field in the Control Primitive success
Response Message is reserved.

The result of a Resume Control Primitive is based on the state of a Command Slot when the Resume
Control Primitive is received, as described below:

Idle: The Resume primitive has no effect.

Receive: The Resume primitive alerts the Management Endpoint that transmission of any remaining
MCTP packets associated with the command is resuming. The Pause Flag is cleared to ‘0’ (refer to
4.4.4).

Process: The Resume primitive allows a previously paused Command Slot to transition to the Transmit
state and starts transmitting a response after responding to the Resume primitive. The Pause Flag is
cleared to ‘0’ (refer to 4.4.4).

Transmit: The Management Endpoint resumes transmission of the response corresponding to the
command associated with that slot after responding to the Resume primitive. The Pause Flag is cleared
to ‘0’ (refer to 4.4.4).

The Management Endpoint shall transmit a Control Primitive Response Message with success status after
receiving the Resume primitive.

4.4.3 Abort

The Abort Control Primitive is used to re-initialize a Command Slot to the Idle state, clear the Pause Flag
associated with that Command Slot, and attempt to abort command processing associated with that
Command Slot.

Aborting a Command Message shall have no effect on the other Command Slot of the Management
Endpoint, other Management Endpoints, or NVMe Controllers in the NVM Subsystem. Subsequent
command processing in the Command Slot is not affected by the Abort.

A Management Controller may issue an Abort primitive to clean-up resources associated with a Command
Slot in an unknown state.

The CPSP field for the Abort primitive is reserved. The format of the CPSR field in the Control Primitive
success Response Message is shown in Figure 28.

Figure 28: Abort Control Primitive Success Response Message Fields

Byte Description

NVM Express Management Interface 1.0

35

08:07

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific

status.

Bits Description

15:02 Reserved

01:00

Command Processing Abort Status (CPAS): This field indicates the effect of the Abort

primitive on the processing of the Command Message associated with the Command Slot.

0h – Command aborted after processing completed or no command to abort.
1h – Command aborted before processing began
2h – Command processing partially completed.
3h – Reserved

The result of an Abort primitive is based on the state of the specified Command Slot when the Abort primitive
is received, as described below:

Idle: The Abort primitive has no effect. The Management Endpoint shall transmit a Response Message
with success status and the CPAS field cleared to 0h.

Receive: The Management Endpoint discards the contents of the Command Slot and transitions to the
Idle state. The Management Endpoint shall transmit a Response Message with success status and the
CPAS field set to 1h.

Process: The Abort primitive causes processing of the command in the Command Slot to be aborted.

- If the Abort primitive was received before command processing started, the Management Endpoint
discards the contents of the Command Slot and transitions to the Idle state. The Management
Endpoint shall transmit a success Response Message and the CPAS field set to 1h.

- If the Abort primitive was received while the command is being processed, the Management
Endpoint discards the contents of the Command Slot and transitions to the Idle state. The
Management Endpoint attempts to abort the command.

o If the command is aborted and had no effect on the NVM Subsystem, then the Management
Endpoint shall transmit a success Response Message and the CPAS field set to 1h.

o If the Management Endpoint is not able to abort the command, then the Management
Endpoint shall transmit a success Response Message and set the CPAS field to 2h.

o If the command has completed processing (e.g., the Management Endpoint is paused),
then the Management Endpoint shall transmit a success Response Message and the
CPAS field is cleared to 0h.

Transmit: The Management Endpoint discards the contents of the Command Slot and transitions to
the Idle state. The Management Endpoint transmits a Response Message with success status and the
CPAS field cleared to 0h.

It is not an error to issue an Abort Control Primitive to a slot that is paused. The state of slot is reinitialized
clearing the Pause Flag.

4.4.4 Get State

The Get State Control Primitive is used to check the state of a Command Slot.

The format of the CPSP field in the Control Primitive Request Message is shown in Figure 29.

Figure 29: Get State Control Primitive Request Message Fields

Byte Description

NVM Express Management Interface 1.0

36

08:07

Control Primitive Specific Parameter (CPSP): This field is used to to pass Control Primitive specific

parameter information.

Bits Description

15:01 Reserved

00
Clear Error State Flags (CESF): This field specifies whether or not

to clear the error state flags when completing this command.

The Management Endpoint shall transmit a Response Message with success status after receiving the Get
State primitive. The format of the CPSR field in the Control Primitive success Response Message is shown
in Figure 30.

Bits 04 through 13 are global for the Management Endpoint and indicate MCTP transport errors that have
occurred. Refer to the MCTP Base Specification section for Dropped Packets and Dropped Messages for
details on the errors.

Figure 30: Get State Control Primitive Success Response Message Fields

NVM Express Management Interface 1.0

37

Byte Description

NVM Express Management Interface 1.0

38

08:07

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive

specific status.

Bits Description

15

Pause Flag (PFLG): This field indicates whether or not the Command Slot is

paused. A ‘1’ in this field indicates the Command Slot is paused. A ‘0’ in this field
indicates the Command Slot is not paused.

While the Pause Flag is set, the Management Endpoint disables the timeout
waiting for packet timer, as defined in the MCTP Base Specification, for the
Command Slot and does not transmit responses to Command Messages.

14

NVM Subsystem Reset Occurred (NSSRO): This field indicates when an NVM

Subsystem Reset occurs while main power is applied. This field is set to ‘1’ if the
last occurrence of an NVM Subsystem Reset occurred while main power was
applied to the NVM Subsystem. This field is cleared to ‘0’ following a power cycle
and following a Get State primitive with the CESF field set to ‘1’.

13

Bad Packet or Other Physical Layer (BPOPL): This field is set to ‘1’ if a packet

sent to the Management Endpoint failed a transport specific packet integrity check
since the last time Get State primitive was executed with the CESF field set to ‘1’.

12

Bad, Unexpected, or Expired Message Tag (BUEMT): This field is set to ‘1’ if

the Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was executed with the CESF
field set to ‘1’.

11

Out-of-Sequence Packet Sequence Number (OSPSN): This field is set to ‘1’ if

the Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was executed with the CESF
field set to ‘1’.

10

Unexpected Middle or End of Packet (UMEP): This field is set to ‘1’ if the

Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was executed with the CESF
field set to ‘1’.

09

Incorrect Transmission Unit (ITU): This field is set to ‘1’ if the Management

Endpoint detected an error of this type (refer to the MCTP Base Specification)
since the last time Get State primitive was executed with the CESF field set to ‘1’.

08

Unknown Destination ID (UDSTID): This field is set to ‘1’ if the Management

Endpoint detected an error of this type (refer to the MCTP Base Specification)
since the last time Get State primitive was executed with the CESF field set to ‘1’.

07

Bad Header Version (BHVS): This field is set to ‘1’ if the Management Endpoint

detected an error of this type (refer to the MCTP Base Specification) since the last
time Get State primitive was executed with the CESF field set to ‘1’.

06

Unsupported Transmission Unit (UTUNT): This field is set to ‘1’ if the

Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was executed with the CESF
field set to ‘1’.

05

Timeout Waiting for a Packet (WPTT): This field is set to ‘1’ if the Management

Endpoint detected an error of this type (refer to the MCTP Base Specification)
since the last time Get State primitive was executed with the CESF field set to ‘1’.

04

Bad Message Integrity Check Error (TMICE): This field is set to ‘1’ if the

Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was executed with the CESF
field set to ‘1’.

03

Command Message to non-Idle Command Slot (CMNICS): This field is set to

‘1’ if the Management Endpoint received a Command Message packet while the
Command Slot is not in the Idle state since the last time Get State primitive was
executed with the CESF field set to ‘1’.

02 Reserved

01:00 Slot State (SSTA): This field indicates the current state of the Command Slot.

NVM Express Management Interface 1.0

39

Byte Description

Value Description

0h Idle

1h Receive

2h Process

3h Transmit

4.4.5 Replay

The Replay Control Primitive is used to retransmit the Response Message for the last Command Message
processed in a Command Slot.

The format of the CPSP field in the Control Primitive Request Message is shown in Figure 15.

Figure 31: Replay Control Primitive Request Message Fields

Byte Description

08:07

Control Primitive Specific Parameter (CPSP): This field is used to to pass Control Primitive
specific parameter information.

Bits Description

15:08 Reserved

07:00

Response Replay Offset (RRO): This field specifies the
starting packet number from which the Response Message
associated with the last Command Message processed in the
Command Slot should be replayed.

This is a 0’s based value. When this field is cleared to ‘0’, the
first packet of the associated Response Message is the first
packet replayed.

If this field specifies an offset that is beyond the length of the
Response Message, then processing of the Control Primitive
is aborted and the Management Endpoint transmits an Invalid
Parameter Error Response Message.

The format of the CPSR field in the Control Primitive success Response Message is shown in Figure 32.

Figure 32: Replay Control Primitive Success Response Message Fields

Byte Description

08:07

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive
specific status.

Bit Description

15:01 Reserved

00

Response Replay (RR): This bit indicates if a previous
Response Message is retransmitted. This field is set to ‘1’ if
the requested Response Messageis retransmitted by the
Management Endpoint. This field is cleared to ‘0’ if the
requested Response Message is not retransmitted.

NVM Express Management Interface 1.0

40

The result of a Replay primitive is based on the state of the specified Command Slot when the Replay
primitive is received, as described below:

Idle: The Replay primitive requests retransmission of the completion at the offset specified by the RRO
field if such a completion is available.

- If the Replay primitive was received following an Abort primitive or a reset (refer to 9.3) before any
Command Messages are processed, then there is no Response Message available to retransmit.
The Management Endpoint shall transmit a Response Message with success status with the RR
field cleared to ‘0’.

- If the Replay primitive was received following the processing of one or more Command Messages,
then the Management Endpoint shall transmit a Response Message with success status with the
RR field set to ‘1’. The Management Endpoint transmits the MCTP packets associated with the
requested Response Message after the Control Primitive success response.

Receive: The Management Endpoint transmits a Response Message with success status with the RR
field cleared to ‘0’.

Process: The Replay primitive requests retransmission of the last response transmitted for the
command in this Command Slot.

- If a Response Message has not been transmitted for the Command Message (i.e., the slot never
entered the Transmit state for the Command Message), then the Management Endpoint transmits
a Response Message with success status and the RR field cleared to ‘0’.

- If a Response Message has been transmitted for the Command Message (i.e., a Response
Message was transmitted indicating that more processing was required), then the Management
Endpoint transmits a Response Message with success status with the RR field set to ‘1’. The
Management Endpoint retransmits the response indicating that more processing is required.

Transmit: The Management Endpoint stops transmitting response packets for the Command Slot. The
Management Endpoint transmits a Response Message with success status with the RR field set to ‘1’.
The Management Endpoint transmits the MCTP packets associated with the current command
response after the Control Primitive success response. The Command Slot remains in the Transmit
state until retransmission is complete.

It is not an error to issue a Replay primitive to a Command Slot that is paused. The response is retransmitted
even if the Command Slot was paused (i.e., there is an implicit Resume primitive affecting both Command
Slots when processing the Replay primitive) at any time during the response including before the first packet
was transmitted. After successful completion of the Replay primitive, neither Command Slot is paused.

4.5 Error Handling

This section describes error handling specific to the NVMe-MI message processing model.

4.5.1 Command Timeouts

MCTP defines a maximum response time for MCTP control messages (refer to the appropriate MCTP
transport binding specification).

If a Management Endpoint determines that command processing may not complete within the lesser of
100ms or the request-to-response time specified in the appropriate MCTP transport binding specification,
the Management Endpoint shall utilize the More Processing Required response mechanism. The Response
Message from the Management Endpoint may only be delayed beyond this timeout while the transport is
busy or unavailable.

NVM Express Management Interface 1.0

41

A Management Endpoint should only use the More Processing Required response for commands that are
expected to take longer than the required time (e.g., Format NVM). Implementations are strongly
discouraged from using this response while processing normal commands.

4.5.2 Control Primitive Timeouts

A Management Endpoint shall attempt to respond to a Control Primitive within the lesser of 100ms or the
request-to-response time specified in the appropriate MCTP transport binding specification. The Response
Message from the Management Endpoint may only be delayed beyond this timeout while the transport is
busy or unavailable.

NVM Express Management Interface 1.0

42

5 Management Interface Command Set

The Management Interface Command Set defines the Command Messages that may be submitted by a
Management Controller when the NMIMT value is set to NVMe-MI Command.

The MCTP Message structure with all fields that are common to all MCTP Messages are defined for
commands in section 3.2. The Response Message structure for Management Interface Command Set is
defined in section 4.2. The Message Body for Management Interface Commands is shown in Figure 34.
Command specific fields for the Management Interface command set are defined in this section.

Figure 33: Management Interface Command Request Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

OpcodeByte 4 >

Byte 8 > NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

Byte 12 >

Bytes
16 to N

>

Byte M >

Reserved

Figure 34: Management Interface Request Message Description

Byte Description

03:00 NVMe-MI Message Header: Refer to 3.2.

04
Opcode (OPC): This field specifies the opcode of the NVMe Management Interface
command to be executed. Refer to Figure 35.

07:05 Reserved

11:08 NVMe Management Dword 0 (NMD0): This field is command specific Dword 0.

15:12 NVMe Management Dword 1 (NMD1): This field is command specific Dword 1.

N:16 Request Data (Optional)

M+3:M Message Integrity Check (MIC): Refer to 3.2.

The Request Data field is an optional field included in some Management Interface commands. If the size
of the Request Data does not match the specified Data Length of the Command Message, then the
Management Endpoint responds with a generic error response and Invalid Command Input Data Size
status.

Figure 35 defines the Management Interface Command Set opcodes.

NVM Express Management Interface 1.0

43

Figure 35: Opcodes for Management Interface Commands

Opcode O/M1 Command

00h M Read NVMe-MI Data Structure

01h M NVM Subsystem Health Status Poll

02h M Controller Health Status Poll

03h M Configuration Set

04h M Configuration Get

05h M VPD Read

06h M VPD Write

07h M Reset

08h – BFh - Reserved

C0h – FFh O Vendor specific

NOTES:
1. O/M definition: O = Optional, M = Mandatory.

Figure 36: Management Interface Command Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Byte 4 > NVMe Management Response

 Response Data (optional)
Bytes
8 to N

>

Byte M >

Status

Figure 37: Management Interface Response Message Description

Byte Description

03:00 NVMe-MI Message Header: Refer to 3.2.

04
Status: This field indicates the status of the NVMe-MI command. Refer
to 4.2.

07:05 NVMe Management Response: This field is command specific.

N:16 NVMe Response Data (optional)

M+3:M Message Integrity Check: Refer to 3.2.

5.1 Configuration Get

The Configuration Get command allows the Management Controller to read the current configuration of a
Management Endpoint.

The command uses NVMe Management Dwords 0 and 1. The format of NVMe Management Dwords 0 and
1 are shown in Figure 38 and Figure 39 respectively. There is no Request Data included in a Configuration

NVM Express Management Interface 1.0

44

Get command.

Figure 38: Configuration Get – NVMe Management Dword 0

Bit Description

31:08 Configuration specific

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is being
read. Refer to Figure 40.

Figure 39: Configuration Get – NVMe Management Dword 1

Bit Description

31:00 Configuration specific

NVMe-MI Configurations are listed in Figure 40. Specifying a reserved identifier in the Configuration
Identifier field causes the command to complete with an Invalid Parameter error status.

Figure 40: NVMe Management Interface Configuration Identifiers

Configuration
Identifier

O/M1 Description

00h Reserved

01h M SMBus/I2C Frequency

02h M Health Status Change

03h M MCTP Transmission Unit Size

04h - BFh Reserved

C0h - FFh O Vendor Specific

NOTES:
1. O/M definition: O = Optional, M = Mandatory.

The NVMe Management Response field is configuration specific.

5.1.1 SMBus/I2C Frequency (Configuration Identifier 01h)

The SMBus/I2C Frequency configuration indicates the current frequency of the SMBus port, if applicable.

The configuration specific fields in NVMe Management Dword 0 are shown in Figure 41. The
configuration specific fields in NVMe Management Dword 1 are reserved. The current SMBus/I2C
Frequency configuration is returned in the NVMe Management Response field as shown in Figure 42.

Figure 41: SMBus/I2C Frequency – NVMe Management Dword 0

Bit Description

31:24
Port Identifier: This field specifies the port whose SMBus/I2C Frequency is
indicated.

23:08 Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration
that is being read. Refer to Figure 40.

NVM Express Management Interface 1.0

45

Figure 42: SMBus/I2C Frequency – NVMe Management Response

Bit Description

23:04 Reserved

03:00 SMBus/I2C Frequency: The current frequency of the SMBus/I2C. The
default value for this field following a reset or power cycle is 1h, if SMBus is
supported.

Value Description

0h SMBus is not supported or is disabled

1h 100 kHz

2h 400 kHz

3h 1 MHz

4h - Fh Reserved

5.1.2 Health Status Change (Configuration Identifier 02h)

The Health Status Change configuration is used to clear the selected status bits in the Composite Controller
Status field using Configuration Set. A Management Controller should not use Configuration Get for this
Configuration Identifier.

The configuration specific fields in NVMe Management Dwords 0 and 1 are reserved. A Management
Endpoint shall complete a Configuration Get command on this Configuration Identifier with a Success
Response Message. The NVMe Management Response field is reserved and there is no Response
Data.

5.1.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

The MCTP Transmission Unit Size configuration indicates the current MCTP Transmission Unit Size of
the port Identifier specified in Dword 0.

The configuration specific fields in NVMe Management Dword 0 are shown in Figure 43. The
configuration specific fields in NVMe Management Dword 1 are reserved. The current Transmission unit
size of the specified port is returned in the NVMe Management Response field as shown in Figure 44.

Figure 43: MCTP Transmission Unit Size – NVMe Management Dword 0

Bit Description

31:24
Port Identifier: This field specifies the port whose MCTP Transmission Unit Size
is indicated.

23:08 Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration
that is being read. Refer to Figure 40.

Figure 44: MCTP Transmission Unit Size – NVMe Management Response

Bit Description

23:04 Reserved

15:00 MCTP Transmission Unit Size: This field contains the MCTP Transmission
Unit Size in bytes to be used by the port. The default value for this field
following a reset or power cycle is 40h (64).

NVM Express Management Interface 1.0

46

5.2 Configuration Set

The Configuration Set command allows the Management Controller to modify the current configuration of
a Management Endpoint.

The command uses NVMe Management Dwords 0 and 1. The format of NVMe Management Dwords 0 and
1 are shown in Figure 45 and Figure 46 respectively. There is no Request Data included in a Configuration
Set command.

Figure 45: Configuration Set – NVMe Management Dword 0

Bit Description

31:08 Configuration specific

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is being
written. Refer to Figure 40.

Figure 46: Configuration Set – NVMe Management Dword 1

Bit Description

31:00 Configuration specific

NVMe-MI Configurations are listed in Figure 40. Specifying a reserved identifier in the Configuration
Identifier field causes the command to complete with an Invalid Parameter error status.

The NVMe Management Response field is configuration specific.

5.2.1 SMBus/I2C Frequency (Configuration Identifier 01h)

The SMBus/I2C Frequency configuration specifies a new frequency for the SMBus port.

The configuration specific fields in NVMe Management Dword 0 are shown in Figure 47. The
configuration specific fields in NVMe Management Dword 1 are reserved. NVMe Management Response
field is reserved.

After successful completion of this command, the SMBus/I2C frequency is updated to the specified
frequency. A Management Controller should not change this configuration while there are other
Command Messages outstanding.

If the specified frequency is not supported or the Port Identifier specified is not an SMBus/I2C port, the
Management Endpoint shall respond with an Invalid Parameter error status.

Figure 47: SMBus/I2C Frequency – NVMe Management Dword 0

Bit Description

31:24
Port Identifier: This field specifies the port whose SMBus/I2C Frequency is
specified.

23:12 Reserved

NVM Express Management Interface 1.0

47

10:08

SMBus/I2C Frequency: This field specifies the new frequency for the specified
SMBus/I2C port.

Value Description

0h Reserved

1h 100 kHz

2h 400 kHz

3h 1 MHz

4h - Fh Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration
that is being written. Refer to Figure 40.

5.2.2 Health Status Change (Configuration Identifier 02h)

This Configuration Identifier is used to clear selected status bits in the Composite Controller Status field of
the NVM Subsystem Health Data Structure, refer to Figure 57, returned by the NVM Subsystem Health
Status Poll command.

The Composite Controller Status field of the NVM Subsystem Health Data Structure is used to report the
occurrence of health and status events associated with the NVM subsystem. When a bit in this field is set
to ‘1’, it remains a ‘1’ until cleared.

A Configuration Set command that selects Health Status Change may be used to clear corresponding bits
selected in NVMe Management Dword 1 of the Composite Controller Status field to ‘0’.

Figure 48: Health Status Change - NVMe Management Dword 0

Bit Description

31:08 Reserved

07:00 Configuration Identifier: This field specifies the identifier of the Configuration that is
being written. Refer to Figure 40.

Figure 49: Health Status Change – NVMe Management Dword 1

Bit Description

31:12 Reserved

11
Critical Warning: When this bit is set to ‘1’, the corresponding bit in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

10
Available Spare: When this bit is set to ‘1’, the corresponding bit in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

9
Percentage Used: When this bit is set to ‘1’, the corresponding bit in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

8
Composite Temperature Change: When this bit is set to ‘1’, the corresponding bit
in the Composite Controller Status field of the NVM Subsystem Health Data
Structure is cleared to ‘0’.

7
Controller Status Change: When this bit is set to ‘1’, the corresponding bit in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

6 Firmware Activated: When this bit is set to ‘1’, the corresponding bit in the

NVM Express Management Interface 1.0

48

Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

5
Namespace Attribute Changed: When this bit is set to ‘1’, the corresponding bit in
the Composite Controller Status field of the NVM Subsystem Health Data Structure
is cleared to ‘0’.

4
Controller Enable Change Occurred: When this bit is set to ‘1’, the corresponding
bit in the Composite Controller Status field of the NVM Subsystem Health Data
Structure is cleared to ‘0’.

3
NVM Subsystem Reset Occurred: When this bit is set to ‘1’, the corresponding bit
in the Composite Controller Status field of the NVM Subsystem Health Data
Structure is cleared to ‘0’.

2
Shutdown Status: When this bit is set to ‘1’, the corresponding bit in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

1
Controller Fatal Status: When this bit is set to ‘1’, the corresponding bit in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

0
Ready: When this bit is set to ‘1’, the corresponding bit in the Composite Controller
Status field of the NVM Subsystem Health Data Structure is cleared to ‘0’.

5.2.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

The MCTP Transmission Unit Size configuration specifies a new MCTP Transmission Unit Size for the
specified Port Identifier. A Management Controller should check the maximum MCTP Transmission Unit
Size for the port reported by the Management Endpoint using the Read NVMe-MI Data Structure
command (refer to Figure 61).

The configuration specific fields in NVMe Management Dwords 0 and 1 are shown in Figure 50 and
Figure 51 respectively. The NVMe Management Response field is reserved.

After successful completion of this command, the MCTP Transmission Unit Size for MCTP packets on the
specified port is updated to the specified size for future Command Messages. A Management Controller
should not change this configuration while there are other commands outstanding.

If the specified MCTP Transmission Unit Size is not supported or the Port Identifier specified is not valid,
the Management Endpoint shall abort the command and send a Response Message with an Invalid
Parameter error status.

Figure 50: MCTP Transmission Unit Size – NVMe Management Dword 0

Bit Description

31:24
Port Identifier: This field specifies the port whose MCTP Transmission Unit Size is
specified.

23:08 Reserved

07:00 Configuration Identifier: This field specifies the identifier of the Configuration
that is being written. Refer to Figure 40.

Figure 51: MCTP Transmission Unit Size – NVMe Management Dword 1

Bit Description

31:16 Reserved

NVM Express Management Interface 1.0

49

15:00
MCTP Transmission Unit Size: This field contains the MCTP Transmission Unit

Size in bytes to be used by the port.

5.3 Controller Health Status Poll

The Controller Health Status Poll command is used to efficiently determine changes in health status
attributes associated with one or more Controllers in the NVM Subsystem.

The Controller Health Status Poll command uses NVMe Management Dwords 0 and 1. The format of NVMe
Management Dword 0 is shown in Figure 52 and the format of NVMe Management Dword 1 is shown in
Figure 53.

Figure 52: Controller Health Status Poll – NVMe Management Dword 0

Bit Description

31
Report All (ALL): When this bit is set to ‘1’, health status is returned for Controllers
regardless of the status of the Health Status Changed flag bit vector (i.e., it is as though all
the bits are set in the Health Status Changed flag bit vector).

30:27 Reserved

26
Include SR-IOV Virtual Functions (INCVF): When this bit is set to 1, Controller Health
Status is reported for NVMe Controllers associated with SR-IOV Virtual Functions (VFs)

25
Include SR-IOV Physical Functions (INCPF): When this bit is set to 1, Controller Health
Status is reported for NVMe Controllers associated with SR-IOV Physical Functions (PFs)

24
Include PCI Functions (INCF): When this bit is set to 1, Controller Health Status is
reported for NVMe Controllers associated with a non SR-IOV PCI Function.

23:16

Maximum Response Entries (MAXRENT): This field specifies the maximum number of
Controller Health Data Structure entries that may be returned in the completion. This is 0’s
based field. The maximum number of entries is 255. Specifying 256 entries is interpreted as
an Invalid Field.

15:00
Starting Controller ID (CTLID): This field specifies the starting Controller ID from which to
return health status information.

Figure 53: Controller Health Status Poll – NVMe Management Dword 1

Bit Description

31
Clear Changed Flags (CCF): When this bit is set to 1, the state of reported changed flag
bits in the changed flag bit vector are cleared in Controllers whose health status is
contained in the Response Data.

30:5 Reserved

04 Critical Warning (CWARN): When this bit is set to 1, critical warning changes are reported.

03 Available Spare (SPARE): When this bit is set to 1, available spare changes are reported.

02
Percentage Used (PDLU): When this bit is set to 1, percentage used changes are
reported.

01
Composite Temperature Changes (CTEMP): When this bit is set to 1, composite
temperature changes are reported.

00
Controller Status Changes (CSTS): When this bit is set to 1, Controller status changes
are reported.

The Controller Health Status Poll Response Messages use the NVMe Management Response field with
the format shown in Figure 54.

The Response Data field size may vary based on the number of Controllers whose health status has
changed and which fields and Controller types are filtered-out. The Response Entries field indicates the

NVM Express Management Interface 1.0

50

number of Controller Health Data Structures that are contained in the Response Data.

Figure 54: Controller Health Status Poll – NVMe Management Response

Bit Description

23:16
Response Entries (RENT): This field specifies the number of Controller Health Data Structure
Entries present in the Response Data for this Response Message. This is a 0’s based value.

15:00 Reserved

The Controller Health Data Structure, shown in Figure 55, contains the health status attributes that are
tracked for each Controller. When the command is executed, health status is returned for up to 255
Controllers starting at a specified Controller ID. Controllers are ordered incrementally by Controller
Identifier.

Figure 55: Controller Health Data Structure

Bytes Description

1:0
Controller Identifier (CTLID): This field specifies the NVMe Controller identifier with which the
data contained in this data structure is associated.

3:2

Controller Status (CSTS): This field reports the NVMe Controller status.

Bit Description

15:8 Reserved

7
Firmware Activated: This bit is set to ‘1’ when a new
firmware image is activated. This bit is cleared to ‘0’ after it is
read using this command.

6

Namespace Attribute Changed: This bit is set to ‘1’ when a
change occurs in the Identify Namespace data structure for
one or more namespaces. This bit is cleared to ‘0’ after it is
read using this command.

5
Controller Enable Change Occurred: This bit is set to ‘1’
when the Enable (CC.EN) bit changes state. This bit is
cleared to ‘0’ after it is read using this command.

4
NVM Subsystem Reset Occurred: This bit corresponds to
the value of the NVM Subsystem Reset Occurred
(CSTS.NSSRO) bit.

3:2
Shutdown Status: This field corresponds to the value of the
Shutdown Status (CSTS.SHST) field.

1
Controller Fatal Status: This bit corresponds to the value of
the Controller Fatal Status (CSTS.CFS) bit.

0
Ready: This bit corresponds to the value of the Ready
(CSTS.RDY) bit.

5:4

Composite Temperature (CTEMP): This field contains a value corresponding to a temperature
in degrees Kelvin that represents the current composite temperature of the Controller and
namespace(s) associated with that Controller. The value of this field corresponds to the value in
the NVMe Controller SMART / Health Information Log.

6

Percentage Used (PDLU): This field contains a vendor specific estimate of the percentage of
NVM Subsystem life used based on the actual usage and the manufacturer’s prediction of NVM
life. The value of this field corresponds to the value in the NVMe Controller SMART / Health
Information Log.

NVM Express Management Interface 1.0

51

7
Available Spare (SPARE): This field contains a normalized percentage (0 to 100%) of the
remaining spare capacity available. The value of this field corresponds to the value in the
NVMe Controller SMART / Health Information Log.

8

Critical Warning (CWARN): This field indicates critical warnings for the state of the Controller.
The value of this field corresponds to the value in the NVMe Controller SMART / Health
Information Log.

Bit Description

7:5 Reserved

4
Volatile Memory Backup Failed: This bit is set to ‘1’ when
the volatile memory backup device has failed.

3
Read Only: This bit is set to ‘1’ when the media has been
placed in read only mode.

2
Reliability Degraded: This bit is set to ‘1’ when NVM
Subsystem reliability has been degraded due to significant
media related errors or an internal error.

1
Temperature Above or Under Threshold: This bit is set to
‘1’ when a temperature is above an over temperature
threshold or below an under temperature threshold.

0
Spare Threshold: this bit is set to ‘1’ when the available
spare has fallen below the available spare threshold.

15:9 Reserved

Associated with each Controller in the NVM Subsystem is a Health Status Changed flag bit vector with a
bit corresponding to each field in the Controller Health Data Structure. The initial value following a reset or
power cycle of all changed flag bits is cleared to ‘0’. A Health Status Changed flag bit in the bit vector for a
Controller is set when the value of the corresponding Controller Health Data Structure field for that
Controller changes state. The state of the entire changed flag bit vector is cleared in a Controller on a reset,
power cycle, or a Configuration Set command that selects Health Status Change. The state of reported bits
in the changed flag bit vector is cleared in Controllers whose health status is returned in the Success
Response Message to a Controller Health Status Poll command with the Clear Changed Flags bit set to
‘1’.

A Controller Health Status Poll response may return the health status for up to 255 Controllers in the
Response Data field. An NVM Subsystem may contain up to 64K Controllers, so a method is needed to
limit the size of the Response Message. The Starting Controller Identifier field in the Command Message
specifies the starting Controller ID that is checked for a change in health status while the Maximum
Response Entries field specifies the maximum number of Controllers whose health status may be returned
in the Response Data field. The Response Data field contains the Controller Health Status Data Structure
for the first M Controllers starting with Controller N whose health status has changed, where M is equal to
the Maximum Response Entries field and N is equal to the Starting Controller Identifier field.

Health status may be filtered (i.e., excluded from being included in the Response Data field regardless of
the Health Status Changed flag) by NVMe Controller type (i.e., PCI Function, SR-IOV PF, and SR-IOV VF)
and by fields in the Controller Health Data Structure. NVMe Controller type filtering is selected by the Include
PCI Functions, Include SR-IOV PFs, and Include SR-IOV VFs fields in NVMe Management Dword 0. When
one of these bits is set, Controllers corresponding to that type of PCI Function are excluded.

Filtering of changes in individual Controller Health Data Structure fields is controlled by fields in NVMe
Management Dword 1. When one of these bits is cleared to ’0’, then that field is removed from determination
of health status changes for that Controller. A Controller’s health status is considered to have changed
when one or more unfiltered changed flag bits in the bit vector for that Controller are set.

NVM Express Management Interface 1.0

52

5.4 NVM Subsystem Health Status Poll

The NVM Subsystem Health Status Poll command is used to efficiently determine changes in health status
attributes associated with the NVM Subsystem.

The NVM Subsystem Health Status Poll command uses NVMe Management Dword 1 as shown in Figure
56.

Figure 56: NVM Subsystem Health Status Poll - NVMe Management Dword 1

Bit Description

31
Clear Status (CS): When this bit is set to 1, the state of reported Composite
Controller Status is cleared.

30:0 Reserved

All other command specific fields are reserved.

The NVM Subsystem Health Data Structure, shown in Figure 57, is returned in the Response Data of a
Successful Response Message. NVM Subsystem Health Status Poll Command responses do not use the
NVMe Management Response field and this field is reserved. The Response Data field contains the NVM
Subsystem Health Data Structure and is always the size of the NVM Subsystem Health Data Structure.

Figure 57: NVM Subsystem Health Data Structure

Byte Description

0

NVM Subsystem Status: This field indicates the status of the NVM Subsystem.

Bit Description

7:6 Reserved

5

Drive Functional: This bit is set to ‘1’ to indicate an NVM
Subsystem is functional. If cleared to ‘0’, then there is an
unrecoverable failure in the NVM Subsystem and the rest of the
transmission may contain invalid information.

4

Reset Not Required: This bit is set to ‘1’ to indicate the NVM
Subsystem does not need a reset to resume normal operation.
If cleared to ‘0’ then the NVM Subsystem has experienced an
error that prevents continued normal operation. A Controller
Level Reset is required to resume normal operation.

3

Port 0 PCIe Link Active: This bit is set to ‘1’ to indicate the first
port’s PCIe link is up (i.e., the Data Link Control and
Management State Machine is in the DL_Active state). If
cleared to ‘0’, then the PCIe link is down.

2
Port 1 PCIe Link Active: This bit is set to ‘1’ to indicate the
second port’s PCIe link is up. If cleared to ‘0’, then the second
port’s PCIe link is down or not present.

1:0 Reserved

1

Smart Warnings: This field contains the Critical Warning field (byte 0) of the NVMe SMART /
Health Information log. Each bit in this field is inverted from the NVMe definition (i.e., the
management interface shall indicate a ‘0’ value while the corresponding bit is ‘1’ in the log page).
Refer to the NVMe specification for bit definitions.

If there are multiple Controllers in the NVM Subsystem, the management endpoint shall combine
the Critical Warning field from every Controller in the NVM Subsystem such that a bit in this field

NVM Express Management Interface 1.0

53

is:

 Cleared to ‘0’ if any Controller in the subsystem indicates a critical warning for that
corresponding bit.

 Set to ‘1’ if all Controllers in the NVM Subsystem do not indicate a critical warning for the
corresponding bit.

2

Composite Temperature: This field indicates the current temperature in degrees Celsius. If a
temperature value is reported, it should be the same temperature as the Composite Temperature
from the SMART log of hottest Controller in the NVM Subsystem. The reported temperature
range is vendor specific, and shall not exceed the range -60 to +127°C. The 8 bit format of the
data is shown below.

This field should not report a temperature that is older than 1 second. If recent data is not
available, the Management Endpoint should indicate a value of 80h for this field.

Value Description

00h-7Eh Temperature is measured in degrees Celsius (0 to 126C)

7Fh 127C or higher

80h No temperature data or temperature data is more the 5 seconds old.

81h Temperature sensor failure

82h-C3h Reserved

C4 Temperature is -60C or lower

C5-FFh Temperature measured in degrees Celsius is represented in two’s
complement (-1 to -59C)

3

Percentage Drive Life Used: Contains a vendor specific estimate of the percentage of NVM
Subsystem NVM life used based on the actual usage and the manufacturer’s prediction of NVM
life. If an NVM Subsystem has multiple Controllers the highest value is returned. A value of 100
indicates that the estimated endurance of the NVM in the NVM Subsystem has been consumed,
but may not indicate an NVM Subsystem failure. The value is allowed to exceed
100. Percentages greater than 254 shall be represented as 255. This value should be updated
once per power-on hour and equal the Percentage Used value in the NVMe SMART Health Log
Page.

5:4

Composite Controller Status: This field reports the composite status of all Controllers in the
NVM Subsystem.

All bits in this field are cleared to ‘0’ for a Controller during a Controller Level Reset. The bits in
this field are also cleared after the NVM Subsystem Health Data Structure (refer to Figure 57) is
returned in a Success Response Message associated with a NVM Subsystem Health Status Poll
command where the Clear Status bit set. A Configuration Set command that selects Health
Status Change may be used to clear selected bits to ‘0’.

Bit Description

15:13 Reserved

12
Critical Warning: This bit is set to ‘1’ when the Critical Warning field in the
Controller Health Data Structure is set to ‘1’ in one or more Controllers in the
NVM Subsystem.

11
Available Spare: This bit is set to ‘1’ when the Available Spare field in the
Controller Health Data Structure has changed state in one or more
Controllers in the NVM Subsystem

10
Percentage Used: This bit is set to ‘1’ when the Percentage Used field in
the Controller Health Data Structure is set to ‘1’ in one or more Controllers in
the NVM Subsystem

9 Composite Temperature Change: This bit is set to ‘1’ when the Composite

NVM Express Management Interface 1.0

54

Temperature field in the Controller Health Data Structure is set to ‘1’ in one
or more Controllers in the NVM Subsystem

8
Controller Status Change: This bit is set to ‘1’ when the Controller Status
field in the Controller Health Data Structure is set to ‘1’ in one or more
Controllers in the NVM Subsystem

7 Firmware Activated: This bit is set to ‘1’ when a new firmware image is
activated in the NVM Subsystem.

6 Namespace Attribute Changed: This bit is set to ‘1’ when a change
occurred in the Identify Namespace data structure associated with one or
more namespaces in the NVM Subsystem.

5 Controller Enable Change Occurred: This bit is set to ‘1’ when the Enable
(CC.EN) bit changes state (i.e., ‘0’ to ‘1’ or ‘1’ to ‘0’) in one or more
Controllers in the NVM Subsystem.

4 NVM Subsystem Reset Occurred: This bit is set to ‘1’ when the value of
the NVM Subsystem Reset Occurred (CSTS.NSSRO) bit transitions from a
‘0’ to a ‘1’ in one or more Controllers in the NVM Subsystem.

3:2 Shutdown Status: This bit is set to ‘1’ when the value of the Shutdown
Status (CSTS.SHST) field bit transitions from a ‘0’ to a ‘1’ in one or more
Controllers in the NVM Subsystem.

1 Controller Fatal Status: This bit is set to ‘1’ when the value of the
Controller Fatal Status (CSTS.CFS) bit transitions from a ‘0’ to a ‘1’ in one or
more Controllers in the NVM Subsystem.

0 Ready: This bit is set to ‘1’ when the value of the Ready (CSTS.RDY) bit
transitions from a ‘0’ to a ‘1’ in one or more Controllers in the NVM
Subsystem.

7:6 Reserved

5.5 Read NVMe-MI Data Structure

The Read NVMe-MI Data Structure command requests a data buffer that describes information about the
NVM Subsystem, the Management Endpoint or the NVMe Controllers.

The command uses NVMe Management Dword 0. The format of NVMe Management Dword 0 is shown in
Figure 58. NVMe Management Dword 1 is reserved. There is no Request Data included in a Read NVMe-
MI Data Structure command.

NVM Express Management Interface 1.0

55

Figure 58: Read NVMe-MI Data Structure – NVMe Management Dword 0

Bit Description

31:24

Data Structure Type (DTYP): This field specifies the data structure to return

Value Definition

00h NVM Subsystem Information

01h Port Information

02h Controller List

03h Controller Information

04h Optional Commands Supported

05h-FFh Reserved

23:16

Port Identifier (PORTID): This field contains the identifier of the port whose data structure is
returned.

If the DTYP field value corresponds to Port Information, then this field contains the port identifier
whose information is requested.

For all other values of the DTYP field, this field is reserved.

15:00

Controller Identifier (CTRLID): This field contains the Controller identifier whose data structure
is returned.

If the DTYP field value corresponds to Controller List or Controller Information, then this field
contains the Controller identifier in the NVM Subsystem whose information is requested.

For all other values of the DTYP field, this field is reserved.

Upon successful completion of the Read NVMe-MI Data Structure, the NVMe Management Response field
is shown in Figure 59 and the specified data structure is returned in the Response Data.

Figure 59: Read NVMe-MI Data Structure – NVMe Management Response

Bit Description

23:16 Reserved

15:00 Response Data Length: The length, in bytes, of the Response Data field in
this Response Message.

The NVM Subsystem Information data structure contains information about the NVM Subsystem. The Port
Identifier and Controller Identifier fields are reserved. The format is shown in Figure 60.

Figure 60: NVM Subsystem Information Data Structure

Byte Description

00
Number of Ports (NUMP): This field specifies the maximum number of ports of any type
supported by the NVM Subsystem. This is a 0’s based value.

01
NVMe-MI Major Version Number (MJR): This field shall be set to 1h to indicate the major
version number of this specification.

02
NVMe-MI Minor Version Number (MNR): This field shall be cleared to 0h to indicate the minor
version number of this specification.

31:03 Reserved

NVM Express Management Interface 1.0

56

The Port Information data structure contains information about a port within the NVM Subsystem. The Port
Identifier specifies the port. The Controller Identifier fields are reserved. The format is shown in Figure 61.

Figure 61: Port Information Data Structure

Byte Description

00 Port Type: Specifies the port type.

Value Definition

0h Inactive

1h PCIe

2h SMBus

3h – FFh Reserved

01 Reserved

03:02 Maximum MCTP Transmission Unit Size: The maximum MCTP Transmission Unit size the
port is capable of sending and receiving.

If the port does not support MCTP, then this field shall be set to 0.

If the port type is PCIe and the port supports MCTP, then this field shall be set to a value
between 64 bytes and the PCIe Max Payload Size supported minus 4, inclusive. All PCIe ports
within an NVM Subsystem should report the same value in this field.

If the port type is SMBus and the port supports MCTP, then this field shall be set to a value
between 64 bytes and 250 bytes, inclusive.

07:04 Reserved

31:08 Port Type Specific (refer to Figure 62 and Figure 63)

Figure 62: PCIe Port Specific Data

Byte Description

08

PCIe Maximum Payload Size: This field indicates the Max Payload Size for the specified PCIe
port. If the link is not active, this field should be cleared to 0h.

Value Definition

0h 128 bytes

1h 256 bytes

2h 512 bytes

3h 1024 bytes

4h 2048 bytes

5h 4096 bytes

6h-FFh Reserved

09

PCIe Supported Link Speeds Vector: This field indicates the Supported Link Speeds for the
specified PCIe port.

Bit Description

7:3 Reserved

2 This bit shall be set to ‘1’ if the link supports 8.0 GT/s

1 This bit shall be set to ‘1’ if the link supports 5.0 GT/s

0 This bit shall be set to ‘1’ if the link supports 2.5 GT/s.

10 PCIe Current Link Speed: The port’s PCIe negotiated link speed using the same encoding as

NVM Express Management Interface 1.0

57

the PCIe Supported Link Speed Vector field. A value of 0h in this field indicates the PCIe Link
is not available.

Value Definition

0h Link not active

1h The current link speed is the speed indicated in the supported link speed bit 0.

2h The current link speed is the speed indicated in the supported link speed bit 1.

3h The current link speed is the speed indicated in the supported link speed bit 2.

4h The current link speed is the speed indicated in the supported link speed bit 3.

5h The current link speed is the speed indicated in the supported link speed bit 4.

6h The current link speed is the speed indicated in the supported link speed bit 5.

7h The current link speed is the speed indicated in the supported link speed bit 6.

8h-FFh Reserved

11

PCIe Maximum Link Width: The maximum PCIe link width for this NVM Subsystem port. This
is the expected negotiated link width that the port link trains to if the platform supports it. A
Management Controller may compare this value with the PCIe Negotiated Link Width to
determine if there has been a PCIe link training issue.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5-7 Reserved

8 PCIe x8

9-11 Reserved

12 PCIe x12

13-15 Reserved

16 PCIe x16

17-31 Reserved

32 PCIe x32

33-255 Reserved

12

PCIe Negotiated Link Width: The negotiated PCIe link width for this port.

Value Definition

0 Link not active

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5-7 Reserved

8 PCIe x8

9-11 Reserved

12 PCIe x12

13-15 Reserved

16 PCIe x16

17-31 Reserved

32 PCIe x32

33-255 Reserved

NVM Express Management Interface 1.0

58

31:13 Reserved

Figure 63: SMBus Port Specific Data

Byte Description

08
Current VPD SMBus/I2C Address: This field indicates the current VPD SMBus/I2C address. A
value of 0h indicates there is no VPD.

09

Maximum VPD Access SMBus/I2C Frequency: This field indicates the maximum SMBus/I2C
frequency supported on the VPD interface.

Value Definition

0h Not supported

1h 100 kHz

2h 400 kHz

3h 1 MHz

4-FFh Reserved

10
Current Management Endpoint SMBus/I2C Address: This field indicates the current MCTP
SMBus/I2C address. A value of 0h indicates there is no Management Endpoint on this port.

11

Maximum Management Endpoint SMBus/I2C Frequency: This field indicates the maximum
SMBus/I2C frequency supported by the Management Endpoint.

Value Definition

0h Not supported

1h 100 kHz

2h 400 kHz

3h 1 MHz

4-FFh Reserved

12
NVMe Basic Management: Bit 0 in this field, if set to ‘1’, indicates if the port implements the NVMe
Basic Management command specified in Appendix A. All other bits in this field are reserved.

31:13 Reserved

The Controller List data structure contains a list of NVMe Controllers in the NVM Subsystem greater than
or equal to the value specified in the Controller Identifier (CTRLID) field. A Controller List may contain up
to 2047 Controller identifiers. Refer to the NVM Express specification for a definition of the Controller List
data structure.

Figure 64: Controller Information Data Structure

Byte Description

00
Port Identifier (PORTID): This field specifies the PCIe port identifier with which the
Controller is associated.

04:01 Reserved

05

PCIe Routing ID Information (PRII): This field provides additional data about the PCI
Express Routing ID (PRI) for the specified Controller.

Bit Description

7:1 Reserved

0 PCIe Routing ID Valid: This bit is set to ‘1’ if the device has captured
a Bus Number and Device Number (Bus Number only for ARI
devices). This bit is set to ‘0’ if the device has not captured a Bus and
Device number (Bus Number only for ARI devices).

NVM Express Management Interface 1.0

59

07:06

PCIe Routing ID (PRI): This field contains the PCIe Routing ID for the specified Controller.

Bit Description

15:8 PCI Bus Number: The Controller’s PCI Bus Number.

7:3 PCI Device Number: The Controller’s PCI Device Number.

2:0 PCI Function Number: The Controller’s PCI Function
Number.

Note: For an ARI Device, bits 7:0 represents the (8-bit) Function Number, which replaces
the (5-bit) Device Number and (3-bit) Function Number fields above.

09:08 PCI Vendor ID: The PCI Vendor ID for the specified Controller.

11:10 PCI Device ID: The PCI Device ID for the specified Controller.

13:12 PCI Subsystem Vendor ID: The PCI Subsystem Vendor ID for the specified Controller.

15:14 PCI Subsystem Device ID: The PCI Subsystem Device ID for the specified Controller.

31:16 Reserved

The Optionally Supported Command List data structure contains a list of optional commands that a
Management Endpoint supports. The Optionally Supported Command List data structure may contain up
to 2047 commands, and shall be minimally sized (i.e., if there is 1 optionally supported command, the data
structure is 4 bytes total).

Figure 65: Optionally Supported Command List Data Structure

Byte Description

01:00

Number of Commands (NUMCMD): This field contains the number of optionally
supported commands in the list. A value of 0h indicates there are no commands in the
list.

03:02
Command 0 (CMD0): This field contains the Command Type and Opcode for the first
optionally supported command or 0h if the list is empty (i.e. no optional commands are
supported). Refer to Figure 66.

05:04
Command 1 (CMD1): This field contains the Command Type and Opcode for the second
optionally supported command, if applicable. Refer to Figure 66.

…

(N*2 +3):
(N*2 + 2)

Command N (CMDN): This field contains the Command Type and Opcode for the N+1
optionally supported command, if applicable. Refer to Figure 66.

Figure 66: Optionally Supported Command Data Structure

Byte Description

00

Command Type: This field specifies the command set used by the optionally supported
command.

Bits Description

7 Reserved

6:3
NVMe-MI Message Type (NMIMT): This field specifies the
NVMe-MI Message Type. Refer to Figure 11.

2:0 Reserved

01 Opcode: This field specifies the opcode used for the optionally supported command.

NVM Express Management Interface 1.0

60

5.6 Reset

The Reset command may be used to initiate a reset.

The Reset command uses NVMe management Dword 0. The format of NVMe Management Dword 0 is
shown in Figure 67. All other command specific fields in the Request Message and Response Message
are reserved.

Figure 67: Reset - NVMe Management Dword 0

Bit Description

31:24 Reset Type: This field specifies the type of reset to be performed.

Value Description

00h Reset NVM Subsystem

01h – FFh Reserved

23:00 Reserved

When a Reset command is completed successfully, the NVM Subsystem Reset is immediately initiated
(refer to 9.3). No success response is transmitted.

5.7 VPD Read

The VPD Read command is used to read the Vital Product Data described in section 9.2. Upon successful
completion of the VPD Read command, the specified portion of the VPD contents is returned in the
Response Data.

The VPD Read command uses NVMe Management Dword 0 and 1. The format of NVMe Management
Dwords 0 and 1 are shown in Figure 68 and Figure 69 respectively. There is no Request Data sent in the
Request Message.

A VPD Read command with length 0 and no data is valid. The Management Endpoint responds with a
Success Response Message and no Response Data. If the Data Length plus Data Offset fields are greater
than the size of the VPD, then the Management Endpoint does not return the VPD contents and responds
with an Invalid Parameter error status response.

Figure 68: VPD Read NVMe Management Dword 0

Bit Description

31:16 Reserved

15:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the VPD data that
is contained in the Response Message.

Figure 69: VPD Read NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
Data Length (DLEN): This field specifies the length, in bytes, to be read from the VPD starting
at the byte offset specified by DOFST.

NVM Express Management Interface 1.0

61

Figure 70: VPD Read Response Data

Skipped
Data

VPD contents

Response
Data

Response Data

Data Offset
(DOFST)

Data Length
(DLEN)

Skipped
Data

5.8 VPD Write

The VPD Write command is used to update the Vital Product Data described in section 9.2.

After the VPD Write command completes successfully, reading the contents of the FRU Information Device
directly or executing a VPD Read command shall return the new VPD contents (i.e., those supplied with
the VPD Write command). The data to be written to the VPD is specified in the Request Data field. VPD
Write uses NVMe Management Dwords 0 and 1 as shown in Figure 71 and Figure 72.

The VPD contents should be capable of being updated at least 100 times using the VPD Write command.
If there is an error preventing update of the VPD contents, then the Management Endpoint responds with
a generic error response and VPD Writes Exceeded status.

A VPD Write command with length 0 and no data is valid. The Management Endpoint responds with a
Success Response Message.

Figure 71: VPD Write – NVMe Management Dword 0

Bit Description

31:16 Reserved

15:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the VPD data that
is written.

Figure 72: VPD Write – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
Data Length (DLEN): This field specifies the length, in bytes, to be written to the VPD starting
at the byte offset specified by DOFST.

NVM Express Management Interface 1.0

62

Figure 73: VPD Write Request Data

Skipped
Data

VPD contents

Request
Data

Request Data

Data Offset
(DOFST)

Data Length
(DLEN)

Skipped
Data

The Management Controller should not read the contents of the VPD while this command is processing.
Reading the contents of the VPD or executing a VPD Read command while a VPD Write command is
executing may return incorrect data as a result of the read.

If the Data Length plus Data Offset fields are greater than the size of the VPD, then the Management
Endpoint does not write to the VPD and responds with an Invalid Parameter error status response.

NVM Express Management Interface 1.0

63

6 NVM Express Admin Command Set

The NVM Express Admin Command Set allows NVMe Admin commands to be issued to any Controller in
the NVM Subsystem using NVMe-MI. Supported commands are listed in Figure 74, and are defined in
the NVMe specification. If an NVMe Admin Command is issued in a Request Message other than one
listed in Figure 74, the Management Endpoint shall return a response with status Invalid Parameter
pointing to the NVMe opcode. Future revisions of this specification may add additional commands to
Figure 74.

Figure 74: List of NVMe Admin Commands Supported

Command O/M1

Firmware Activate/Commit O

Firmware Image Download O

Format NVM O

Get Features M

Get Log Page M

Identify M

Namespace Management O

Namespace Attachment O

Security Send O

Security Receive O

Set Features O

Vendor Specific O

NOTES:
1. O/M definition: O = Optional, M = Mandatory. Mandatory

commands shall be supportd if the NVMe Controller
specified by the Controller ID field supports the command.

NVMe Admin commands over NVMe-MI may interfere with host software. A Management Controller
should coordinate with the host or issue only NVMe Admin commands that do not interfere with host
software or in band NVMe commands (e.g., Identify). Coordination between a Management Controller
and host is outside the scope of this specification.

NVMe Admin Commands over NVMe-MI may target a controller that is disabled or held in reset by the
host. When this occurs, the NVMe Admin command is processed normally.

The Request Message format for NVMe Admin Commands is shown in Figure 75 and is described in Figure
76.

NVM Express Management Interface 1.0

64

Figure 75: NVMe Admin Command Request Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

OpcodeByte 4 >

Byte 8 >

Command Flags

Submission Queue Entry Dword 1

...

Submission Queue Entry Dword 5

Data Offset

Data Length

Submission Queue Entry Dword 8

...

Submission Queue Entry Dword 15

NVMe Request Data (optional)

Byte 24 >

Byte 28 >

Byte 32 >

Byte 36 >

Byte 64 >

Bytes
68 to N

>

Byte M >

Controller ID

Figure 76: NVMe Admin Command Request Description

Byte Description

03:00 NVMe-MI Message Header: Refer to 3.2.

04
Opcode (OPC): This field specifies the opcode of the command to be executed. Refer to
the NVMe specification.

05

Command Flags (CFLGS): This field specifies flags for the command.

Bits 2-7 are reserved.

Bit 1, if set to ‘1’ then the command contains an offset value in bytes 28-31. If cleared to
‘0’ then the DOFST field shall be cleared to 0h.

Bit 0, if set to ‘1’ then the command contains a length value in bytes 32-35. If cleared to
‘0’ then the DLEN field shall be cleared to 0h.

NVM Express Management Interface 1.0

65

07:06
Controller ID (CTLID): This field specifies the conntroller ID of the NVMe Controller that
this command targets.

11:08
Submission Queue Entry Dword 1 (SQEDW1): Submission Queue Entry Dword 1 as
defined in the NVMe specification

15:12
Submission Queue Entry Dword 2 (SQEDW2): Submission Queue Entry Dword 2 as
defined in the NVMe specification

19:16
Submission Queue Entry Dword 3 (SQEDW3): Submission Queue Entry Dword 3 as
defined in the NVMe specification

23:20
Submission Queue Entry Dword 4 (SQEDW4): Submission Queue Entry Dword 4 as
defined in the NVMe specification

27:24
Submission Queue Entry Dword 5 (SQEDW5): Submission Queue Entry Dword 5 as
defined in the NVMe specification

31:28

Data Offset (DOFST): For commands that transmit data from the Management Controller
to the Management Endpoint (i.e., the NVMe Data field in the Request Message has non-
zero length) or do not transmit data, this field shall be cleared to ‘0’. If this field is not 0h,
then the Management Endpoint shall return an error response with status Invalid
Parameter.

For commands that transmit data from the Management Endpoint to the Management
Controller (i.e., the NVMe Data field in the Response Message has non-zero length), this
field specifies the starting offset, in bytes, into the completion data contained in the
Response Message.

Bits 0 and 1 of this field shall be cleared to ‘0’.

35:32

Data Length (DLEN): For commands that do not transmit data in neither the Request
Message nor Response Message, this field shall be cleared to 0h. If this field is not 0h,
then the Management Endpoint shall return an error response with status Invalid
Parameter.

For commands that transmit data from the Management Controller to the Management
Endpoint (i.e., the NVMe Data field in the Request Message has non-zero length), this field
specifies the length, in bytes, of the data contained in the Request Message.

For commands that transmit data from the Management Endpoint to the Management
Controller (i.e., the NVMe Data field in the Response Message has non-zero length), this
field specifies the length, in bytes, of the data contained in the Response Message.

Bits 0 and 1 of this field shall be cleared to ‘0’. This field shall be less than or equal to
4096.

39:36
Submission Queue Entry Dword 8 (SQEDW8): Submission Queue Entry Dword 8 as
defined in the NVMe specification

43:40
Submission Queue Entry Dword 9 (SQEDW9): Submission Queue Entry Dword 9 as
defined in the NVMe specification

4744
Submission Queue Entry Dword 10 (SQEDW10): Submission Queue Entry Dword 10
as defined in the NVMe specification

51:48
Submission Queue Entry Dword 11 (SQEDW11): Submission Queue Entry Dword 11
as defined in the NVMe specification

55:52
Submission Queue Entry Dword 12 (SQEDW12): Submission Queue Entry Dword 12
as defined in the NVMe specification

59:56
Submission Queue Entry Dword 13 (SQEDW13): Submission Queue Entry Dword 13
as defined in the NVMe specification

63:60
Submission Queue Entry Dword 14 (SQEDW14): Submission Queue Entry Dword 14
as defined in the NVMe specification

NVM Express Management Interface 1.0

66

67:64
Submission Queue Entry Dword 15 (SQEDW15): Submission Queue Entry Dword 15
as defined in the NVMe specification

N:68 NVMe Request Data (Optional)

M+3:M Message Integrity Check (MIC): Refer to 3.2.

The Response Message contains the corresponding format for NVMe Admin Commands is shown in
Figure 77 and is described in Figure 78.

Figure 77: NVMe Admin Command Response Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Byte 4 >

Byte 8 > Completion Queue Entry Dword 0

NVMe Response Data (optional)

Byte 12 > Completion Queue Entry Dword 1

Completion Queue Entry Dword 3

Bytes
20 to N

>

Byte M >

StatusReserved

Byte 16 >

Figure 78: NVMe Admin Command Response Description

Byte Description

03:00 NVMe-MI Message Header: Refer to 3.2.

04 Status: This field indicates the status of the NVMe-MI command. Refer to 4.2.

07:05 Reserved

11:08
Completion Queue Entry Dword 0 (CQEDW0): Completion Queue Entry Dword 0 as
defined in the NVMe specification

15:12
Completion Queue Entry Dword 1 (CQEDW1): Completion Queue Entry Dword 1 as
defined in the NVMe specification

19:16
Completion Queue Entry Dword 3 (CQEDW3): Completion Queue Entry Dword 3 as
defined in the NVMe specification. The Command ID field shall be cleared to 0h.

N:20 NVMe Response Data (optional)

M+3:M Message Integrity Check: Refer to 3.2.

NVM Express Management Interface 1.0

67

6.1 Request and Response Data

NVMe Admin Commands may contain data as part of the Command Message. This data is passed in the
NVMe Data field instead of using PRP Lists or SGL segments.

If there is no data sent with the NVMe Admin Command (i.e., the Data Transfer subfield for the opcode is
00b), then the Data Offset and Data Length fields shall be cleared to 0h.

If there is data sent with the NVMe Admin Command (i.e., the Data Transfer subfield for the opcode is 01b),
then the Data Offset field shall be 0h and the Data Length field shall be set to the length of the input data
required by the command. If the Data Length field does not correspond to the required length, the
Management Endpoint shall respond with an Invalid Parameter error status response.

If there is data expected in the Response Message in the completion of the NVMe Admin Command (i.e.,
the Data Transfer subfield in the corresponding NVMe Admin Command for the opcode is 10b), then the
Data Offset and Data Length fields describe the portion of the completion data that is transferred in the
Response Message. Any remaining data not transferred in the Response Message is discarded by the
Management Endpoint as shown in Figure 79. If the Data Length plus Data Offset fields are greater than
the size of the NVMe command completion data, the Management Endpoint should respond with an Invalid
Parameter error status response.

Figure 79: NVMe Admin Command Response Data Example

Discarded
Data

NVMe Command
Completion Data

NVMe Response
Data

NVMe Response
Data

Data Offset
(DOFST)

Data Length
(DLEN)

Discarded
Data

6.2 Status

A Response Message for an NVMe Admin Command may contain two status fields. The first status field,
contained in Byte 4 of the Response Message, is defined by this specification, and the second Status Field,
if present, is contained in Completion Queue Entry Dword 3 and defined in the NVMe Specification.

An NVMe Admin Command Request Message is well formed if it does not contain one of the following
errors:

 Invalid Opcode (e.g., the opcode is not listed in Figure 74)

 Invalid Parameter (e.g., the Controller ID field specifies a Controller ID not implemented in the NVM
Subsystem)

 Invalid Command Size (e.g., the Request Message does not contain a complete command)

NVM Express Management Interface 1.0

68

 Invalid Command Input Data Size (e.g., the NVMe Request Data field is larger than the size
specified in the Data Length field)

If the NVMe Admin Command Request Message is well formed, then a success Response Message is
transmitted. The success response contains the status associated with NVMe Admin Command in the
Status Field of Completion Queue Entry Dword 3. The Status Field contains any NVMe specific status
codes (e.g., Success or Invalid Field in Command).

NVM Express Management Interface 1.0

69

7 PCIe Command Set (optional)

The PCIe Command Set defines optional commands that a Management Controller may submit to access
the memory, I/O, and configuration addresses spaces associated with a Controller in the NVM
Subsystem. Only addresses mapped to the specified Controller may be accessed (e.g., these commands
do not directly access memory on a host). The NMIMT field in the message header for PCIe Command
Messages and Response Messages is set to 4h (PCIe Command).

PCIe commands over NVMe-MI may interfere with host software. A Management Controller should
coordinate with the host or issue only PCIe commands that do not interfere with host software or in-band
NVMe commands (e.g., PCIe Configuration Read). Coordination between a Management Controller and
a host is outside the scope of this specification.

The Request Message format for PCIe Commands is shown in Figure 80 and described in Figure 81.

Figure 80: PCIe Command Request Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

OpcodeByte 4 >

Byte 8 > PCIe Request Dword 0

PCIe Request Dword 1

Request Data (optional)

Byte 12 >

Bytes
20 to N

>

Byte M >

Controller ID Reserved

PCIe Request Dword 2Byte 16 >

NVM Express Management Interface 1.0

70

Figure 81: PCIe Command Request Description

Byte Description

03:00 NVMe-MI Message Header: Refer to 3.2.

04
Opcode (OPC): This field specifies the opcode of the command to be executed. Refer to
Figure 82.

05 Reserved

07:06
Controller ID (CTLID): This field specifies the Controller ID of the NVMe Controller that this
command targets.

11:08 PCIe Request Dword 0 (NMD0): This field is command specific Dword 0.

15:12 PCIe Request Dword 1 (NMD1): This field is command specific Dword 1.

19:16 PCIe Request Dword 2 (NMD2): This field is command specific Dword 2.

N:20 Request Data (Optional)

M+3:M Message Integrity Check (MIC): Refer to 3.2.

Figure 82 defines the PCIe Command opcodes.

Figure 82: Opcodes for PCIe Commands

Opcode O/M
1
 Command

00h O PCIe Configuration Read

01h O PCIe Configuration Write

02h O PCIe Memory Read

03h O PCIe Memory Write

04h O PCIe I/O Read

05h O PCIe I/O Write

06h – FFh - Reserved

NOTES:
1. O/M definition: O = Optional, M = Mandatory.

The Response Message for PCIe Command is shown in Figure 83 and described in Figure 84.

NVM Express Management Interface 1.0

71

Figure 83: PCIe Command Response Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Byte 0 > Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Byte 4 >

 Response Data (optional)
Bytes
8 to N

>

Byte M >

StatusReserved

Figure 84: PCIe Command Response Description

Byte Description

03:00 NVMe-MI Message Header: Refer to 3.2.

04 Status: This field indicates the status of the NVMe-MI command. Refer to 4.2.

07:05 Reserved

N:08 Response Data (optional)

M+3:M Message Integrity Check: Refer to 3.2.

PCIe commands allow the Management Controller to access PCI Express configuration, I/O, and memory
spaces of any Controller in the NVM Subsystem. Support for PCIe commands is optional and indicated by
the Optionally Supported Commands data structure. Refer to Figure 65.

An implementation may support a subset of the PCIe commands. For supported commands, an
implementation may block access to certain address space ranges (e.g., due to security concerns). A PCIe
Command that attempts to access such a blocked address range is aborted with the Status field set to
Access Denied.

It is recommended that PCIe Commands provide access to all non-blocked address spaces whenever
MCTP access is supported. In some implementations, it may not be possible to access PCIe resources in
certain states. A PCIe Command executed when a Controller is in one of these states may be aborted with
the Status field set to PCIe Inaccessible. Refer to 9.1.

A PCIe command that is not well formed results in an error response. A PCIe command is well formed if it
does not contain one of the following errors:

 Invalid Opcode (e.g., the Opcode is not listed in Figure 82)

 Invalid Parameter (e.g., the Controller ID field specifies a Controller ID not implemented in the NVM
Subsystem)

 Invalid Command Size (e.g., the Request Message does not contain a complete command)

 Invalid Command Input Data Size (e.g., the NVMe Request Data field is larger than the size
expected by the command)

NVM Express Management Interface 1.0

72

7.1 PCIe Configuration Read

The PCIe Configuration Read command allows the Management Controller to read the contents of the PCIe
configuration address space associated with an NVMe Controller in the NVM Subsystem. The Controller
ID field in the Command Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dwords 0 and 1 are shown in Figure 85 and Figure 86 respectively.

Figure 85: PCIe Configuration Read – PCIe Request Dword 0

Bit Description

31:16 Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 86: PCIe Configuration Read – PCIe Request Dword 1

Bit Description

31:12 Reserved

11:00
Offset (OFFSET): This field specifies the offset in bytes into the 4096B configuration space

associated with the NVMe Controller at which the read begins.

When this command is completed successfully, PCI configuration space associated with the NVMe
Controller specified by Controller ID is read and returned in the Response Data field. The Offset field
specifies the starting read offset in PCIe configuration address space and the Length field specifies the
number of bytes to be read. The Response Data field is always an integral number of Dwords and is equal
to the Length field rounded up to the next Dword. If Length is not an integral number of Dwords, then zero
padding follows read data.

If the sum of the Offset and Length fields fall outside of PCI configuration space, then the Management
Endpoint responds with an Invalid Parameter error status response. The parameter with the error in this
case is always the Offset field.

A Management Endpoint shall support the PCIe Configuration Read command if any of the other PCIe
Command Set commands are supported. Access to the BAR offsets shall not return an Access Denied
Response Message Status code (i.e., the correct data shall be provided).

7.2 PCIe Configuration Write

The PCIe Configuration Write command allows the Management Controller to write the contents of the
PCIe configuration address space associated with an NVMe Controller in the NVM Subsystem. The
Controller ID field in the Command Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dwords 0 and 1 are shown in Figure 87 and Figure 88 respectively.

Figure 87: PCIe Configuration Write – PCIe Request Dword 0

Bit Description

31:16 Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be written.

NVM Express Management Interface 1.0

73

Figure 88: PCIe Configuration Write – PCIe Request Dword 1

Bit Description

31:12 Reserved

11:00
Offset (OFFSET): This field specifies the offset in bytes into the 4096B configuration space

associated with the NVMe Controller at which the write begins.

When this command is completed successfully, PCI configuration space associated with the NVMe
Controller specified by Controller ID is written with the data contained in the Request Data field. The Offset
field specifies the starting write offset in PCIe configuration address space and the Length field specifies
the number of bytes to be written. The Request Data field is always an integral number of Dwords and is
equal to the Length field rounded up to the next Dword. If Length is not an integral number of Dwords, then
unused padding bytes are discarded.

If the sum of the Offset and Length fields fall outside of PCI configuration space, then the Management
Endpoint responds with an Invalid Parameter error status response. The parameter with the error in this
case is always the Offset field.

7.3 PCIe I/O Read

The PCIe I/O Read command allows the Management Controller to read the contents of PCIe I/O space
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dword 0 and 1 are shown in Figure 89 and Figure 90 respectively.

Figure 89: PCIe I/O Read – PCIe Request Dword 0

Bit Description

31:19 Reserved

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR) of the I/O

space to be read. BARs are located beginning at 10h in PCI Configuraiton space and the value of
this field specifies the starting offset of the associated BAR. For a 64-bit BAR, this field should
correspond to the lower 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h-7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 90: PCIe I/O Read – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the offset in bytes into the PCI BAR associated with the NVMe

Controller at which the read begins.

NVM Express Management Interface 1.0

74

When this command is completed successfully, PCI I/O space associated with the NVMe Controller
specified by Controller ID is read and returned in the Response Data field. The Offset field specifies the
starting read offset in PCIe I/O address space specified by the Base Address Register field. The Length
field specifies the number of bytes to be read. The Response Data field is always an integral number of
Dwords and is equal to the Length field rounded up to the next Dword. If Length is not an integral number
of Dwords, then zero padding follows read data.

If the Base Address Register field does not correspond to an I/O BAR implemented by the specified NVMe
Controller, then the Management Endpoint responds with an Invalid Parameter error status response.

If the sum of the Offset and Length fields fall outside the address range of the BAR specified by the Base
Address Register field, then the Management Endpoint responds with an Invalid Parameter error status
response. The parameter with the error in this case is always the Offset field.

7.4 PCIe I/O Write

The PCIe I/O Write command allows the Management Controller to write the contents of PCIe I/O space
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dword 0 and 1 are shown in Figure 91 and Figure 92 respectively.

Figure 91: PCIe I/O Write – PCIe Request Dword 0

Bit Description

31:19 Reserved

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR) of the I/O

space to be written. BARs are located beginning at 10h in PCI Configuraiton space and the value of
this field specifies the starting offset of the associated BAR. For a 64-bit BAR, this field should
correspond to the lower 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h-7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 92: PCIe I/O Write – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the the offset in bytes into the PCI BAR associated with the

NVMe Controller at which the write begins.

When this command is completed successfully, PCI I/O space associated with the NVMe Controller
specified by Controller ID is written with the data contained in the Request Data field. The Offset field
specifies the starting write offset in PCIe I/O address space specified by the Base Address Register field.
The Length field specifies the number of bytes to be written. The Request Data field is always an integral

NVM Express Management Interface 1.0

75

number of Dwords and is equal to the Length field rounded up to the next Dword. If Length is not an integral
number of Dwords, then unused padding bytes are discarded.

If the Base Address Register field does not correspond to an I/O BAR implemented by the specified NVMe
Controller, then the Management Endpoint responds with an Invalid Parameter error status response.

If the sum of the Offset and Length fields fall outside the address range of the BAR specified by the Base
Address Register field, then the Management Endpoint responds with an Invalid Parameter error status
response. The parameter with the error in this case is always the Offset field.

7.5 PCIe Memory Read

The PCIe Memory Read command allows the Management Controller to read the contents of PCIe memory
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0, 1, and 2. The format of PCIe Request Dword 0, 1, and 2 are
shown in Figure 93, Figure 94, and Figure 95 respectively.

Figure 93: PCIe Memory Read – PCIe Request Dword 0

Bit Description

31:19 Reserved

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR) of the

memory space to be read. BARs are located beginning at 10h in PCI Configuraiton space and the
value of this field specifies the starting offset of the associated BAR. For a 64-bit BAR, this field
should correspond to the lower 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h-7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 94: PCIe Memory Read – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the lower 32-bits (i.e., bits 0 through 31) of the offset in bytes

into the PCI BAR associated with the NVMe Controller at which the read begins.

Figure 95: PCIe Memory Read – PCIe Request Dword 2

Bit Description

31:00
Offset (OFFSET): This field specifies the upper 32-bits (i.e., bits 32 through 63) of the offset in bytes

into the PCI BAR associated with the NVMe Controller at which the read begins.

When this command is completed successfully, PCI memory space associated with the NVMe Controller
specified by Controller ID is read and returned in the Response Data field. The Offset field specifies the
starting read offset in PCIe memory address space specified by the Base Address Register field. The
Length field specifies the number of bytes to be read. The Response Data field is always an integral number

NVM Express Management Interface 1.0

76

of Dwords and is equal to the Length field rounded up to the next Dword. If Length is not an integral number
of Dwords, then zero padding follows read data.

If the Base Address Register field does not correspond to one implemented by the specified NVMe
Controller, or the address range specified by the Base Address Range is not a memory region, then the
Management Endpoint responds with an Invalid Parameter error status response.

If the sum of the Offset and Length fields fall outside the address range specified by the Base Address
Register field, then the Management Endpoint responds with an Invalid Parameter error status response.
The parameter with the error in this case is always the Offset field.

7.6 PCIe Memory Write

The PCIe Memory Write command allows the Management Controller to write the contents of PCIe memory
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0, 1, and 2. The format of PCIe Request Dword 0, 1, and 2 are
shown in Figure 96, Figure 97, and Figure 98 respectively.

Figure 96: PCIe Memory Write – PCIe Request Dword 0

Bit Description

31:19 Reserved

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR)
of the memory space to be written. BARs are located beginning at 10h in PCI Configuraiton
space and the value of this field specifies the starting offset of the associated BAR. For a
64-bit BAR, this field should correspond to the lower 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h-7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 97: PCIe Memory Write – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the lower 32-bits (i.e., bits 0 through 31) of the offset
in bytes into the PCI BAR associated with the NVMe Controller at which the write begins.

Figure 98: PCIe Memory Write – PCIe Request Dword 2

Bit Description

31:00
Offset (OFFSET): This field specifies the upper 32-bits (i.e., bits 32 through 63) of the
offset in bytes into the PCI BAR associated with the NVMe Controller at which the write
begins.

NVM Express Management Interface 1.0

77

When this command is completed successfully, PCI memory space associated with the NVMe Controller
specified by Controller ID is written with the data contained in the Request Data field. The Offset field
specifies the starting write offset in PCIe memory address space specified by the Base Address Register
field. The Length field specifies the number of bytes to be written. The Request Data field is always an
integral number of Dwords and is equal to the Length field rounded up to the next Dword. If Length is not
an integral number of Dwords, then unused padding bytes are discarded.

If the Base Address Register field does not correspond to one implemented by the specified NVMe
Controller, or the address range specified by the Base Address Range is not a memory region, then the
Management Endpoint responds with an Invalid Parameter error status response.

If the sum of the Offset and Length fields fall outside the address range of the BAR specified by the Base
Address Register field, then the Management Endpoint responds with an Invalid Parameter error status
response. The parameter with the error in this case is always the Offset field.

NVM Express Management Interface 1.0

78

8 NVM Express Management Enhancements

This section describes NVMe Management Interface enhancements to the NVM Express specification.

8.1 Identify Controller

The NVMe Identify Controller data structure contains information about an NVMe Controller. Bytes 240-
255 have been allocated by the NVM Express specification for NVMe-MI are defined below.

Figure 99: NVMe Management Interface Identify Controller

Bytes O/M Description

254:240 Reserved

255 M

Management Endpoint Capabilities (MEC): This field indicates the capabilities of
the Management Endpoint in the Controller.

Bits 7:2 are reserved.

Bit 1: If set to ‘1’ then the NVM Subsystem contains a Management Endpoint on a
PCIe port.

Bit 0: If set to ‘1’ then the NVM Subsystem contains a Management Endpoint on
an SMBus/I2C port.

8.2 Management Interface Specific Features

The NVMe Get Features and Set Features Admin commands are used to retrieve and modify Feature
values. Feature Identifiers 78h through 7Fh have been allocated by the NVM Express specification for
NVMe-MI and are defined by this specification.

Figure 100: NVMe Management Interface Feature Identifiers

Feature Identifier O/M1

Persistent
Across
Power

States and
Reset2

Uses Memory
Buffer for
Attributes

Description

78h – 7Dh Reserved

7Eh M No Yes Controller Metadata

7Fh M No Yes Namespace Metadata

NOTES:
1. O/M definition: O = Optional, M = Mandatory. Mandatory commands shall be supportd if

the NVM Subsystem implements a Management Endpoint. These features are not
mandatory if the subsystem does not implement a Management Endpoint.

2. This column is only valid if bit 4 in the Optional NVM Command Support field of the Identify
Controller Data structure is cleared to ‘0’. Refer to the NVMe specification.

8.2.1 Controller Metadata

This feature is used to store metadata about the host platform in an NVM Subsystem for later retrieval.
The values stored in the Controller Metadata Feature do not modify Controller behavior.

The Controller Metadata feature uses NVMe Set Feature Command Dword 11 as shown in Figure 101.

NVM Express Management Interface 1.0

79

Figure 101: Host Metadata – Command Dword 11

Bit Description

31:15 Reserved

14:13

Element Action (EA): This field specifies the action to perform on the Metadata Element
Descriptor data structure. This field shall be cleared to 0h for a Get Features.

Value Definition

00b Add/Update Entry

01b Delete Entry

10 - 11b Reserved

If the Element Action field is set to 00b (Add/Update Entry) and a Metadata Element
Descriptor with the specified Element Type does not already exist in Controller Metadata,
then the Controller creates a new descriptor with the value in the Controller Metadata
structure. This operation is performed in an atomic manner.

If the Element Action field is set to 00b (Add/Update Entry) and a Metadata Element
Descriptor with the specified Element Type already exists in the Controller Metadata,
then the Controller updates the descriptor with the value in the Controller Metadata
structure. This operation is performed in an atomic manner.

If the Element Action field is set to 01b (Delete Entry) and a Metadata Element Descriptor
with the specified Element Type does not already exists in the Controller Metadata, then
no operation is performed and the command completes successfully.

If the Element Action field is set to 01b (Delete Entry) and a Metadata Element Descriptor
with the specified Element Type already exists in the Controller Metadata, then the
Controller deletes the specified Metadata Element Descriptor. This operation is
performed in an atomic manner.

12:00 Reserved

New metadata elements may be added, updated, or deleted based on the action specified in the Element
Action field.

If a Set Features command is submitted for this Feature, a Host Metadata data structure, defined in Figure
102, is transferred in the data buffer for the command. The Host Metadata data structure is 4096 bytes in
size and contains one or more Metadata Element Descriptors. If host software attempts to add or update
a Metadata Element that causes the stored Host Metadata data structure to grow larger than 4096 bytes,
the Controller shall abort the command with the status code Invalid Field in Command. The Host Metadata
structure for this feature is independent of the Host Metadata data structure for the Namespace Metadata
feature described in section 8.2.2.

NVM Express Management Interface 1.0

80

Figure 102: Host Metadata Data Structure

Byte Description

0
Number of Metadata Element Descriptors: This field contains the number of Metadata Elements

in the data structure.

1 Reserved

x:2 Metadata Element Descriptor 0: This field contains the first Metadata Element descriptor.

y:x+1
Metadata Element Descriptor 1: This field contains the second Metadata Element descriptor or 0h

if there is only 1 entry.

… …

4095:z
Metadata Element Descriptor N: This field contains the N+1 th Metadata Element descriptor or 0h

if there are fewer than N+1 entries.

A Host Metadata data structure may contain at most one Metadata Element Descriptor of each element
type. Each Metadata Element Descriptor contains the data structure shown in Figure 103.

Figure 103: Metadata Element Descriptor

Bit Description

32 + (Element
Length*8) :32

Element Value (EVAL): This field specifies the value for the element.

31:16
Element Length (ELEN): This field specifies the length of the Element Value field
in bytes. This field shall be 0h when deleting an entry (EA = 01b).

15:12 Reserved

11:8

Element Revision (ER): This field specifies the revision of this element value.
Unless specified otherwise elsewhere in this specification, all Metadata Element
Descriptors compliant with this version of the NVMe-MI Specifciation shall set this
field to a value of 0h.

7:6 Reserved

5:0

Element Type (ET): This field specifies the type of metadata stored in the
descriptor.

Value Definition

00h Reserved

01h – 017h
NVMe-MI defined element types. Controller Metadata
Element types are defined in Figure 104. Namespace
Metadata Element types are defined in Figure 105.

18h – 1Fh Vendor Specific

If a Get Features command is issued for this Feature, all Controller Metadata associated with the specified
Controller is added to a Host Metadata Data Structure specified in Figure 102 and returned in the data
buffer for that command. The data buffer size is equal to the size of the Host Metadata Data Structure and
is 4096 bytes in size.

NVM Express Management Interface 1.0

81

Figure 104: Controller Metadata Element Types

Value Definition

00h Reserved

01h
Operating System Controller Name: The name of the
Controller in the operating system as a UTF-8 string.

02h
Operating System Driver Name: The name of the driver in
the operating system as a UTF-8 string.

03h
Operating System Driver Version: The version of the
driver in the operating system as a UTF-8 string.

04h
Pre-boot Controller Name: The name of the driver in the
pre-boot environment as a UTF-8 string.

05h
Pre-boot Driver Name: The name of the driver in the pre-
boot environment as a UTF-8 string.

06h
Pre-boot Driver Version: The version of the driver in the
pre-boot environment as a UTF-8 string.

07h – 17h Reserved

18h – 1Fh Vendor Specific

Controller Metadata is reset on a Controller Level Reset (i.e., the number of stored Metadata Element
Descriptors is zero). Executing a Get Features command while the Controller is disabled returns zero
Metadata Element Descriptors.

8.2.2 Namespace Metadata

This feature is used to store metadata about a namespace associated with a Controller in the NVM
Subsystem for later retrieval. The values stored in the Namespace Metadata Feature do not modify
Controller behavior on the namespace. This feature is namespace specific.

The Namespace Metadata feature uses Command Dword 11 as shown in Figure 101.

New metadata elements may be added, updated, or deleted based on the action specified in the Element
Action field.

If a Set Features command is submitted for this Feature, a Host Metadata data structure, defined in Figure
102, is transferred in the data buffer for the command. The Host Metadata data structure is 4096 bytes in
size and contains one or more Metadata Element Descriptors. If host software attempts to add or update
a Metadata Element that causes the stored Host Metadata data structure to grow larger than 4096 bytes,
the Controller shall abort the command with the status code Invalid Field in Command. The Host Metadata
structure for this feature is independent of the Host Metadata data structure for the Controller Metadata
feature described in section 8.2.1.

A Host Metadata data structure may contain up to one Metadata Element Descriptor of each element type.
Each Metadata Element Descriptor contains the data structure shown in Figure 103.

If a Get Features command is issued for this Feature, all Namespace Metadata associated with the
specified Controller is added to a Host Metadata Data Structure specified in Figure 102 and returned in the
data buffer for that command. The data buffer size is equal to the size of the Host Metadata Data Structure
and is 4096 bytes in size.

Namespace Metadata is reset on a Controller Level Reset (i.e., the number of stored Metadata Element
Descriptors is zero). Executing a Get Features command while the Controller is disabled returns zero
Metadata Element Descriptors.

NVM Express Management Interface 1.0

82

Figure 105: Namespace Metadata Element Types

Value Definition

00h Reserved

01h
Operating System Namespace Name: The name of the
namespace in the operating system as a UTF-8 string.

02h
Pre-boot Namespace Name: The name of the namespace
in the pre-boot environment as a UTF-8 string.

03h – 17h Reserved

18h – 1Fh Vendor Specific

NVM Express Management Interface 1.0

83

9 Management Architecture

9.1 Operational Times

The ability of a Management Endpoint to receive and process Request Messages outlined in this
specification is dependent on the state of the Management Endpoint. This section enumerates Management
Endpoint operational times and the operations supported in each of these operational times.

The NVM Subsystem power state is defined by the state of main power and auxiliary power. Main power
consist of one or more voltage rails as defined by form factor. When main power consists of multiple voltage
rails, main power is considered “on” when power is good on all main voltage rails. Auxiliary power is
optionally supported by a form factor and enables wake-up processing in the absence of main power.
Auxiliary power is considered “off” in form factors and platforms that do not support auxiliary power. Figure
106 defines the power states of a Management Endpoint.

Figure 106: NVM Subsystem Power States

Power State Main Power Auxiliary Power

Powered Off Off Off

Auxiliary Power Off On

Main Power On On

Main Power with No Auxiliary Power On Off

The operations supported in each NVM Subsystem power state are summarized in Figure 107. VPD
SMBus/I2C access consists of processing read operations to the FRU Information Device. SMBus/I2C
MCTP access consists of processing and responding to MCTP messages and responding to the NVMe
Basic Management Command (refer to Appendix A) on the NVM Subsystem SMBus/I2C port. PCIe MCTP
access consists of processing and responding to MCTP messages issued on any NVM Subsystem PCIe
port. The behavior of an operation that is “Not Supported” in Figure 107 is undefined.

NVM Express Management Interface 1.0

84

Figure 107: Operations Supported During NVM Subsystem Power States

Operation

P
o

w
e

re
d

 O
ff

A
u

x
ilia

ry
 P

o
w

e
r

M
a

in
 P

o
w

e
r (w

ith

A
u

x
illa

ry
 P

o
w

e
r)

M
a

in
 P

o
w

e
r w

ith
 N

o

A
u

x
ilia

ry
 P

o
w

e
r

VPD I2C Access
Not

Supported
Supported Supported

Inplementation
Specific

SMBus/I2C MCTP Access
Not

Supported
Optional1 Supported Supported

PCIe MCTP Access
Not

Supported
Not

Supported
Supported Supported

When an NVM Subsystem transitions from a power state in which accesses are not supported to one where
accesses are supported, accesses shall be processed one second after entering the power state in which
accesses are supported. For example, an SMBus/I2C MCTP access issued one second after transitioning
from a “Powered Off” to a “Main Power” state is guaranteed to be processed. The behavior of accesses
prior to this one second time interval is undefined. For example, the behavior of an SMBus/I2C MCTP
access issued 50ms after transitioning from a “Powered Off” to a “Main Power” state is undefined.

When transitioning between power states in which accesses are supported in both states (i.e., the state
before and after the transition), there is no interruption in access processing (i.e., accesses are processed
prior to the state transition, during the state transition, and immediately after entering the new power state).

Request Messages are processed whenever MCTP access is supported on an interface (i.e., SMBus/I2C
or PCIe). Although not recommended, an implementation may not support PCIe and SMBus/I2C MCTP
accesses during a PCI Express conventional reset on any PCI Express port in the NVM Subsystem.
Although not recommended, an implementation may choose not to support processing of PCIe Commands
that target a Controller in the NVM Subsystem that is in one of the following states:2

 Controller Level Reset

 SR-IOV virtual function is not enabled,

 During any type of PCI Express Conventional Reset,

 During a PCI Express Function Level Reset (FLR),

 When the PCI Express Function is in a non-D0 power D-state, and

 When the PCI Express link is down (i.e., not in the DL_Active state).

If a PCIe Command is received that targets a Controller in one of these states and the implementation does

1 An implementation that supports SMBus MCTP Access during Auxiliary Power may support a subset of
commands during this power state. The commands that are supported are implementation specific.
2 A Management Controller shall only send these commands using SMBus/I2C or another PCIe port since
the link associated with the PCIe port and controller is down in these states.

NVM Express Management Interface 1.0

85

not support processing of PCIe Commands in that state, then the PCIe command is completed with status
PCIe Inaccessible. Processing of supported PCIe Commands is required in all other Controller states.

If a PCIe Command is received that targets a Controller whose corresponding PCIe link is in a low power
state (i.e., PCIe ASPM), then processing of the command may cause the link to temporarily exit the low
power state.

9.2 Vital Product Data

Each NVM Subsystem with one or more Management Endpoints shall have a FRU Information Device
which is compliant with the IPMI Platform Management FRU Information Storage Definition. The VPD shall
contain the required elements defined in Figure 108. The size of the VPD is 256 bytes as defined by the
IPMI Platform Management FRU Information Storage Definition.

The VPD shall be accessible using the VPD Read command. The entire contents of the VPD may be
updated using the VPD Write command.

If the NVM Subsystem has an SMBus/I2C interface, the VPD shall be accessible at the SMBus/I2C address
of the FRU Information Device using the access mechanism over I2C as defined in the IPMI Platform
Management FRU Information Storage Definition. Updating the VPD by writing to the FRU Information
Device directly on SMBus/I2C shall not be supported.

Figure 108: VPD Elements

Byte Name

07:00 Common Header

119:08 Product Info Area

Vendor Specific:120 MultiRecord Info Area

Vendor Specific Internal Use Area (optional)

Vendor Specific Chassis Info Area (optional)

Vendor Specific Board Info Area (optional)

VPD records utilize the Type/Length byte format defined in the IPMI Platform Management FRU Information
Storage Definition. Type/Length byte encodings utilized in this specification are summarized in Figure 109.

Figure 109: Type/Length Byte Format

Bits Field Name Description

7:6 Type Code
Specifies field encoding
11b – Always corresponds to ASCII in this specification

5:0 Number of Data Bytes
Specifies field length
000000b indicates that the field is empty

9.2.1 Common Header

Byte
Factory
Default

Description

00 01h IPMI Format Version Number (IPMIVER): This field indicates the IPMI Format Version.

01 Impl Spec

Internal Use Area Starting Offset (IUAOFF): This field indicates the starting offset in

multiples of 8 bytes for the Internal Use Area. A value of 00h may be used to indicate the
Internal Use Area is not present.

02 Impl Spec

Chassis Info Area Starting Offset (CIAOFF): This field indicates the starting offset in

multiples of 8 bytes for the Chassis Info Area. A value of 00h may be used to indicate the
Chassis Info Area is not present.

NVM Express Management Interface 1.0

86

03 Impl Spec

Board Info Area Starting Offset (BIAOFF): This field indicates the starting offset in

multiples of 8 bytes for the Board Info Area. A value of 00h may be used to indicate the
Board Info Area is not present.

04 01h
Product Info Area Starting Offset (PIAOFF): This field indicates the starting offset in

multiples of 8 bytes for the Product Info Area.

05 0Fh
MultiRecord Info Area Starting Offset (MRIOFF): This field indicates the starting offset in

multiples of 8 bytes for the MultiRecord Info Area.

06 00h Reserved

07 Impl Spec

Common Header Checksum (CHCHK): Checksum computed over bytes 0 through 6. The

checksum is computed by adding the 8-bit value of the bytes modulo 256 and then taking
the 2’s complement of this sum. When the checksum and the sum of the bytes module 256
are added, the result should be 0h.

9.2.2 Product Info Area (offset 8 bytes)

Byte
Offset

Factory
Default

Description

00 01h IPMI Format Version Number (IPMIVER): This field indicates the IPMI Format Version.

01 0Eh
Product Info Area Length (PALEN): This field indicates the length of the product info

area in multiples of 8 bytes. 112 bytes/8 = 14 = 0x0Eh

02 19h
Language Code (LCODE): This field indicates the language used. A value of 19h is

used to indicate English.

03 C8h
Manufacturer Name Type/Length (MNTL): This byte indicates the type and length of

the Manufacturer Name field.

11:04
Impl
Spec

Manufacturer Name (MNAME): This field indicates the Manufacturer name in 8-bit

ASCII. Unused bytes should be NULL characters.

The Manufacturer name in this field should correspond to that in the PCI Subsystem
Vendor ID (SSVID) and IEEE OUI Identifier fields in the Identify Controller Data
Structure

12 D8h
Product Name Type/Length (PNTL): This byte indicates the type and length of the

Product Name field.

36:13
Impl
Spec

Product Name (PNAME): This field indicates the Product name in 8-bit ASCII. Unused

bytes should be NULL characters.

37 E8h
Product Part/Model Number Type/Length (PPMNNTL): This byte indicates the type

and length of the Product Part/Model Number field.

77:38
Impl
Spec

Product Part/Model Number (PPMN): This field indicates the Product Part/Model

Number in 8-bit ASCII. Unused bytes should be NULL characters.

This field should contain the same value as the Model Number (NM) field in the NVMe
Identify Controller Data Structure

78 C2h
Product Version Type/Length (PVTL): This byte indicates the type and length of the

Product Part/Model Number field.

80:79
Impl
Spec

Product Version (PVER): This field indicates the Product Version in 8-bit ASCII.

Unused bytes should be NULL characters.

81 D4h
Product Serial Number Type/Length (PSNTL): This byte indicates the type and length

of the Product Serial Number field.

101:82
Impl
Spec

Product Serial Number (PSN): This field indicates the Product Serial Number in 8-bit

ASCII. Unused bytes should be NULL characters.

This field should contain the same value as the Serial Number (SN) field in the NVMe
Identify Controller Data Structure.

102 0h
Asset Tag Type/Length (ATTL): This byte indicates the type and length of the Asset

Tag field. A value of 00h may be used to indicate an Asset Tag is not present.

103 0h
FRU File ID Type/Length (ATTL): This byte indicates the type and length of the FRU

File ID field. A value of 00h may be used to indicate a FRU File ID is not present.

NVM Express Management Interface 1.0

87

104 C1h End of Record (EOR): A value of C1h in this byte indicates the end of record

110:105 Reserved

111
Impl
Spec

Product Info Area (PICHK): Checksum computed over bytes 0 through 110. The

checksum is computed by adding the 8-bit value of the byes modulo 256 and then taking
the 2’s complement of this sum. When the checksum and the sum of the bytes module
256 are added, the result should be 0h.

9.2.3 NVMe MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Bh NVMe Record Type ID

01 2h Bit 7 – end of list; record format version = 2h

02 28h
Record Length (RLEN): This field indicates the length of the MultiRecord Area
in bytes.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum
(i.e., the modulo 256 sum of the record data bytes from byte offset 05 through
the end of this record plus this checksum byte equals zero)

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero
checksum (i.e., the modulo 256 sum of the preceding record bytes starting with
the first byte of the header plus this checksum byte equals zero.

05 0h
NVMe MultiRecord Area Version Number: This field indicates the version
number of this multirecord. This field shall be set to 0h in this version of the
specification.

06
Impl
Spec

Management Endpoint Form Factor (MEFF): This field indicates the form
factor of the Management Endpoint.

Value Definition

0 Other – unknown

1 – 15 Reserved

16 2.5” Form Factor – unknown

17 2.5” Form Factor – U.2 (SFF-8639) 15mm

18 2.5” Form Factor – U.2 (SFF-8639) 7mm

19 – 31 Reserved

32 CEM add in card – unknown

33 CEM add in card – Low Profile (HHHL)

34 CEM add in card – Standard Height Half Length (FHHL)

35 CEM add in card – Standard Height Full Length (FHFL)

36-47 Reserved

48 M.2 module – unknown

49 M.2 module – 2230

50 M.2 module – 2242

51 M.2 module – 2260

52 M.2 module – 2280

53 M.2 module – 22110

54-63 Reserved

64 BGA SSD – unknown

65-239 Reserved

240-255 Vendor Specific

NVM Express Management Interface 1.0

88

12:07
Reserved

13
Impl
Spec

Initial 1.8V Power Supply Requirements: This field specifies the initial 1.8V power
supply requirements in Watts prior to receiving a Set Slot Power message.

14
Impl
Spec

Maximum 1.8V Power Supply Requirements: This field specifies the maximum
1.8V power supply requirements in Watts. A value of zero indicates that the
power supply voltage is not used.

15
Impl
Spec

Initial 3.3V Power Supply Requirements: This field specifies the initial 3.3V power
supply requirements in Watts prior to receiving a Set Slot Power message.

16
Impl
Spec

Maximum 3.3V Power Supply Requirements: This field specifies the maximum
3.3V power supply requirements in Watts. A value of zero indicates that the
power supply voltage is not used.

17 Reserved

18
Impl
Spec

Maximum 3.3V aux Power Supply Requirements: This field specifies the maximum
3.3V power supply requirements in 10 mW units. A value of zero indicates that
the power supply voltage is not used.

19
Impl
Spec

Initial 5V Power Supply Requirements: This field specifies the initial 5V power
supply requirements in Watts prior to receiving a Set Slot Power message.

20
Impl
Spec

Maximum 5V Power Supply Requirements: This field specifies the maximum 5V
power supply requirements in Watts. A value of zero indicates that the power
supply voltage is not used.

21
Impl
Spec

Initial 12V Power Supply Requirements: This field specifies the initial 12V power
supply requirements in Watts prior to receiving a Set Slot Power message.

22
Impl
Spec

Maximum 12V Power Supply Requirements: This field specifies the maximum 12V
power supply requirements in Watts. A value of zero indicates that the power
supply voltage is not used.

23
Impl
Spec

Maximum Thermal Load: This field specifies the maximum thermal load from the
NVM Subsystem in Watts.

36:24
Impl
Spec

Total NVM Capacity: This field indicates the total NVM capcity of the
Management Endpoint in bytes.

If the NVM Subsystem supports Namespace Management, then this field should
correspond to the value reported in the TNVMCAP field in the NVMe Identify
Controller Data structure.

A value of 0h may be used to indicate this feature is not supported.

63:37 Reserved

9.2.4 NVMe PCIe Port MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Ch NVMe PCIe Port Record Type ID

01 2h Bit 7 – end of list; record format version = 2h

02 28h
Record Length (RLEN): This field indicates the length of the MultiRecord Area
in bytes.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum
(i.e., the modulo 256 sum of the record data bytes from byte offset 05 through
the end of this record plus this checksum byte equals zero)

NVM Express Management Interface 1.0

89

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero checksum
(i.e., the modulo 256 sum of the preceding record bytes starting with the first byte
of the header plus this checksum byte equals zero.

05 0h
NVMe PCIe Port MultiRecord Area Version Number: This field indicates the
version number of this multirecord. This field shall be set to zero in this version
of the specification.

06
Impl
Spec

PCIe Port Number: This field contains the PCIe port number. This is the same
value as that reported in the Port Number field in the PCIe Link Capabilities
Register.

07 Impl

Port Information: This field indicates information about the PCIe Ports in the
device.

Bits 7 to 1 are reserved.

Bit 0, if set to ‘1’ indicates that all PCIe ports within the device have the same
capabilities (i.e., the capabilities listed in this structure are consistent across each
PCIe port).

08
Impl
Spec

PCIe Link Speed: This field indicates a bit vector of link speeds supported by
the PCIe port.

Bit Definition

7:3 Reserved

2
Set to ‘1’ if the PCIe link supports 8.0 GT/s. Otherwise
cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports 5.0 GT/s. Otherwise
cleared to ‘0’.

0
Set to ‘1’ if the PCIe link supports 2.5 GT/s. Otherwise
cleared to ‘0’.

09
Impl
Spec

PCIe Maximum Link Width: The maximum PCIe link width for this NVM
Subsystem port. This is the expected negotiated link width that the port link trains
to if the platform supports it. A Management Controller may compare this value
with the PCIe Negotiated Link Width to determine if there has been a PCIe link
training issue.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5-7 Reserved

8 PCIe x8

9-11 Reserved

12 PCIe x12

13-15 Reserved

16 PCIe x16

17-31 Reserved

32 PCIe x32

33-255 Reserved

10
Impl
Spec

MCTP Support: This field contains a bit vector that specifies the level of support
for the NVMe Management Interface.

Bits 7 to 1 are reserved.

NVM Express Management Interface 1.0

90

Bit 0, if set to ‘1’ indicates that MCTP based management commands are
supported on the PCIe port.

11
Impl
Spec

Ref Clk Capability: This field contains a bit vector that specifies the PCIe
clocking modes supported by the port.

Bit Definition

7:4 Reserved

3
Set to ‘1’ if the device automatically uses RefClk if
provided and otherwise uses SRIS. Otherwise cleared
to ‘0’.

2
Set to ‘1’ if the PCIe link supports Separate ReClk with
SSC (SRIS). Otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports Separate ReClk with
no SSC (SRNS). Otherwise cleared to ‘0’.

0
Set to ‘1’ if the PCIe link supports common ReClk.
Otherwise cleared to ‘0’.

15:12 00h Reserved

9.3 Reset

This section describes NVMe-MI architected resets.

9.3.1 NVM Subsystem Reset

An NVM Subsystem Reset is initiated under the conditions outlined in the NVMe specification (e.g., when
main power is applied to the NVM Subsystem). In addition to these conditions, an NVM Subsystem Reset
may be initiated by executing a Reset command.

An NVMe-MI initiated NVM Subsystem Reset may interfere with host software. A Management Controller
should coordinate with the host. Coordination between a Management Controller and a host are outside
the scope of this specification.

When an NVM Subsystem Reset is initiated, the entire NVM Subsystem is reset. This includes all NVM
Subsystem port (PCIe and SMBus/I2C), Management Endpoints, and Controller Management Interfaces.
All state is returned to its default condition.

9.3.2 Controller Level Reset

A Controller Level Reset is initiated under the conditions outlined in the NVMe specification.

An NVMe-MI initiated Controller Level Reset may interfere with host software. A Management Controller
should coordinate with the host. Coordination between a Management Controller and a host are outside
the scope of this specification.

The actions performed on a Controller Level Reset are outlined in the NVMe specification. A Controller
Level Reset has no effect on the Controller Management Interface associated with that Controller, the PCI
Express port associated with that Controller, or a Management Endpoint associated with that port. A
Controller Level Reset also has no effect on Management Interface Command Set or NVM Express Admin
Command Set commands that target that Controller (i.e., the NVM Express Admin Command Set is still
available even though the NVMe Controller may be disabled or held in reset) or Control Primitives. A
Controller Level Reset may affect PCIe Command Set commands executing on that Controller (refer to
9.1). If a PCIe Command is affected, then the command is completed with status PCIe Inaccessible.

A Controller Level Reset that causes a new firmware image to activate is considered a special event and

NVM Express Management Interface 1.0

91

may impact the operation of the Controller Management Interface associated with one or more Controllers,
execution of NVMe-MI commands, and Management Endpoints within an NVM Subsystem. This impact is
unspecified and vendor specific. The Management Controller and host should coordinate the activation of
a new firmware image. Coordination between a Management Controller and a host are outside the scope
of this specification.

9.3.3 Management Endpoint Reset

A Management Endpoint reset is initiated under the conditions outlined in the MCTP Base Specification or
the associated MCTP transport binding specifications.

In addition to these conditions, a Management Endpoint associated with a PCI Express port is reset when
the PCI Express port is in one of the following states:

 A PCI Express conventional reset, and

 When the PCI Express link is down (i.e., not in the DL_Active state).

When a Management Endpoint Reset is initiated, the state of that Management Endpoint is returned to its
default condition and any commands associated with that Management Endpoint being processed are
aborted. A reset of a Management Endpoint in an NVM Subsystem has no effect on any other Management
Endpoint in the NVM Subsystem or any other NVM Subsystem entity.

9.4 Security

The Management Endpoint may respond with a Response Message Status value of Access Denied in an
error response. While a drive is in an unlocked state, this mechanism may not be used for the Management
Interface Command Set or the NVMe Admin Command Set.

The commands and the times at which such a response is generated is vendor specific. The mechanism
used to lock a drive is outside the scope of this specification.

NVM Express Management Interface 1.0

92

Appendix A – Technical Note: NVM Express Basic Management
Command

This specification utilizes Management Component Transport Protocol (MCTP) messages. The NVMe
Basic Management Command does not use MCTP. Support for the NVMe Basic Management Command
is optional.

This command does not provide any mechanism to modify or configure the NVMe device. Such features
use the more capable MCTP protocol rather than this command’s simpler SMBus Block Read. The host
may reuse existing SMBus or FRU Information Device read subroutines for this read and is not required to
switch the SMBus between master and slave modes as in MCTP.

The block read protocol is specified by the SMBus specification which is available online at www.smbus.org.
First slave address write and command code bytes are transmitted by the host, then a repeated start and
finally a slave address read. The host keeps clocking as the drive then responds in slave mode with the
selected data. The command code is used as a starting offset into the data block shown in Figure 110, like
an address on a serial EEPROM.

The offset value increments on every byte read and is reset to zero on a stop condition. A read command
without a repeated start is permissible and starts transmission from offset zero. Reading more than the
block length with an I2C read is also permissible and these reads continue into the first byte in the next
block of data. The PEC accumulates all bytes sent or received after the start condition and the current
value is inserted whenever a PEC field is reached.

Blocks of data are packed sequentially. The first 2 blocks are defined by the NVMe-MI workgroup. The
first block is the dynamic host health data. The second block includes the Vendor ID (VID) and serial
number of the drive. Additional blocks of data may be defined by the owner of the VID. Reading past the
end of the vendor defined blocks shall return zeros.

The SMBus slave address to read this data structure is not the same address we use for MCTP, and
defaults to 6Ah if ARP is not invoked1. Since SMBus shifts the address left to make room for the read/write
direction bit, the address appears in the examples below as D4h for write and D5h for read. Interleaved
MCTP and block read traffic is permissible and neither command type shall disturb the state of the other
commands.

Here are a few example reads from an NVMe drive at 30°C, no alarms, VID=1234h, serial number is
AZ123456 using the format defined in Figure 110. Host transmissions are shown in white blocks and drive
responses are shown in grey blocks:

Example 1: SMBus block read of the drive’s status (status flags, SMART warnings, temperature):

St
ar

t

D4h

Addr W

A
ck

00h

Cmd
Code

A
ck

BFh

Status
Flags

A
ck

FFh

SMART
Warnings

A
ck

1Eh

Temp

A
ck

01h

Drive Life
Used

A
ck

00h

Reserved

A
ck

00h

Reserved

A
ck

10h

PEC

A
ck

St
o

p

R
es

ta
rt

D5h

Addr R

A
ck

06h

Length

A
ck

Example 2: SMBus block read of the drive’s static data (VID and serial number):

1 Note that a previous version of this command mentioned that it would be the same address as MCTP.

http://www.smbus.org/

NVM Express Management Interface 1.0

93

St
ar

t

D4h

Addr W

A
ck

08h

Cmd
Code

A
ck

12h

VID

A
ck

34h

VID

A
ck

41h

Serial #
‘A’

A
ck

5Ah

Serial #
‘Z’

A
ck

31h

Serial #
‘1’

A
ck

32h

Serial #
‘2’

A
ck

33h

Serial #
‘3’

A
ck

R
e

st
ar

t

D5h

Addr R

A
ck

16h

Length

A
ck

35h

Serial #
‘5’

A
ck

36h

Serial #
‘6’

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

34h

Serial #
‘4’

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

DAh

PEC

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

St
o

p

Example 3: SMBus send byte to reset Arbitration bit:

St
ar

t

D4h

Addr W

A
ck

FFh

Cmd
Code

A
ck

St
o

p

Example 4: I2C read of status and vendor content, I2C allows reading across SMBus block boundaries:

St
ar

t

D4h

Addr W

A
ck

00h

Cmd
Code

A
ck

16h

Length

A
ck

34h

VID

A
ck

41h

Serial #
‘A’

A
ck

5Ah

Serial #
‘Z’

A
ck

31h

Serial #
‘1’

A
ck

32h

Serial #
‘2’

A
ck

33h

Serial #
‘3’

A
ck

R
e

st
ar

t

D5h

Addr R

A
ck

35h

Serial #
‘5’

A
ck

36h

Serial #
‘6’

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

34h

Serial #
‘4’

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

B0h

PEC

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

20h

Serial #
‘ ‘

A
ck

St
o

p

BFh

Status
Flags

A
ck

FFh

SMART
Warnings

A
ck

1Eh

Temp

A
ck

01h

Drive Life
Used

A
ck

00h

Reserved

A
ck

00h

Reserved

A
ck

10h

PEC

A
ck

06h

Length

A
ck

12h

VID

A
ck

20h

Serial #
‘ ‘

A
ck

The SMBus Arbitration bit may be used for simple arbitration on systems that have multiple drives on the
same SMBus segment without ARP or muxes to separate them. To use this mechanism, the host follows
this 3 step process to handle collisions for the same slave address:

1. The host does an SMBus byte write to send byte FFh which clears the SMBus Arbitration
bit on all listening Management Endpoints at this slave address.

2. The host does an I2C read starting from offset 0h and continuing at least through the serial
number in the second block. The drive transmitting a ‘0’ when other drives sent a ‘1’ wins
arbitration and sets the arbitration bit to ‘1’ upon read completion to give other drives priority
on the next read.

3. Repeat step 2 until all drives are read, host receiving the Arbitration bit as a ‘1’ indicates
loop is done.

4. Sort the responses by serial number since the order of drive responses varies with health
status and temperatures.

NVM Express Management Interface 1.0

94

Be careful that there are no short reads of similar data between steps 1 and 3. If the read data is exactly
the same on multiple drives then all these drives set the arbitration bit. After that a new send byte FFh is
required to restart the process.

The logic levels were intentionally inverted to normally high in the bytes 1 and 2. This is an additional
mechanism to assist systems that do not have ARP or muxes. Since ‘0’ bits win arbitration on SMBus, a
drive with an alarm condition is prioritized over healthy drives in the above arbitration scheme. A single I2C
read of byte offsets 1&2 from an array of drives detects alarm conditions. Note that only one drive with an
alarm may be reliably detected because drives without the same alarm stop transmitting once the bus
contention is detected. For this reason the bits are sorted in order of priority. Continuing to read further
provides the serial number of the drive that had the alarm.

Figure 110: Subsystem Management Data Structure
Command

Code
Offset
(byte)

Description

0

00
Length of Status: Indicates number of additional bytes to read before encountering PEC.

This value should always be 6 (06h) in implementations of this version of the spec.

01

Status Flags (SFLGS): This field indicates the status of the NVM Subsystem.

SMBus Arbitration – Bit 7 is set ‘1’ after an SMBus block read is completed all the way to

the stop bit without bus contention and cleared to ‘0’ if an SMBus Send Byte FFh is received
on this SMBus slave address.

Drive Not Ready – Bit 6 is set to ‘1’ when the subsystem is not capable of processing NVMe

management commands, and the rest of the transmission may be invalid. If cleared to ‘0’,
then the NVM Subsystem is fully powered and ready to respond to management
commands. This logic level intentionally identifies and prioritizes powered up and ready
drives over their powered off neighbors on the same SMBus segment.

Drive Functional – Bit 5 is set to ‘1’ to indicate an NVM Subsystem is functional. If cleared

to ‘0’, then there is an unrecoverable failure in the NVM Subsystem and the rest of the
transmission may be invalid.

Reset Not Required - Bit 4 is set to ‘1’ to indicate the NVM Subsystem does not need a reset

to resume normal operation. If cleared to ‘0’ then the NVM Subsystem has experienced an
error that prevents continued normal operation. A Controller Level Reset is required to
resume normal operation.

Port 0 PCIe Link Active - Bit 3 is set to ‘1’ to indicate the first port’s PCIe link is up (i.e., the

Data Link Control and Management State Machine is in the DL_Active state). If cleared to
‘0’, then the PCIe link is down.

Port 1 PCIe Link Active - Bit 2 is set to ‘1’ to indicate the second port’s PCIe link is up. If

cleared to ‘0’, then the second port’s PCIe link is down or not present.

Bits 1-0 shall be set to ‘1’.

NVM Express Management Interface 1.0

95

Command
Code

Offset
(byte)

Description

02

SMART Warnings: This field shall contain the Critical Warning field (byte 0) of the NVMe

SMART / Health Information log. Each bit in this field shall be inverted from the NVMe
definition (i.e., the management interface shall indicate a ‘0’ value while the corresponding
bit is ‘1’ in the log page). Refer to the NVMe specification for bit definitions.

If there are multiple Controllers in the NVM Subsystem, the management endpoint shall
combine the Critical Warning field from every Controller such that a bit in this field is:

 Cleared to ‘0’ if any Controller in the subsystem indicates a critical warning for that
corresponding bit.

 Set to ‘1’ if all Controllers in the NVM Subsystem do not indicate a critical warning
for the corresponding bit.

03

Composite Temperature (CTemp): This field indicates the current temperature in degrees

Celsius. If a temperature value is reported, it should be the same temperature as the
Composite Temperature from the SMART log of hottest Controller in the NVM Subsystem.
The reported temperature range is vendor specific, and shall not exceed the range -60 to
+127°C. The 8 bit format of the data is shown below.

This field should not report a temperature when that is older than 5 seconds. If recent data
is not available, the Management Endpoint should indicate a value of 80h for this field.

Value Description

00h-7Eh Temperature is measured in degrees Celsius (0 to 126C)

7Fh 127C or higher

80h No temperature data or temperature data is more the 5 seconds old.

81h Temperature sensor failure

82h-C3h Reserved

C4 Temperature is -60C or lower

C5-FFh
Temperature measured in degrees Celsius is represented in two’s
complement (-1 to -59C)

04

Percentage Drive Life Used (PDLU): Contains a vendor specific estimate of the percentage

of NVM Subsystem NVM life used based on the actual usage and the manufacturer’s
prediction of NVM life. If an NVM Subsystem has multiple Controllers the highest value is
returned. A value of 100 indicates that the estimated endurance of the NVM in the NVM
Subsystem has been consumed, but may not indicate an NVM Subsystem failure. The value
is allowed to exceed 100. Percentages greater than 254 shall be represented as 255. This
value should be updated once per power-on hour and equal the Percentage Used value in
the NVMe SMART Health Log Page.

05:06 Reserved

07
PEC: An 8 bit CRC calculated over the slave address, command code, second slave address

and returned data. The algorithm is defined in the SMBus specification.

8

08
Length of identification: Indicates number of additional bytes to read before encountering

PEC. This value should always be 22 (16h) in implementations of this version of the spec.

10:09
Vendor ID: The 2 byte vendor ID, assigned by the PCI SIG. Should match VID in the Identify

Controller command response. Note the MSB is transmitted first.

11:30
Serial Number: 20 characters that match the serial number in the NVMe Identify Controller

command response. Note the first character is transmitted first.

31
PEC: An 8 bit CRC calculated over the slave address, command code, second slave address

and returned data. The algorithm is defined in the SMBus specification.

32+ 32:255

Vendor Specific – This data structure shall not exceed the maximum read length of 255

specified in the SMBus version 3 specification. Preferably length is not greater than 32 for
compatibility with SMBus 2.0, additional blocks shall be on 8 byte boundaries.

NVM Express Management Interface 1.0

96

Appendix B – Example MCTP Messages & Message Integrity Check

Below are artificial MCTP Messages with their corresponding Message Integrity values. Figure 113 shows
an example where the message is not an even number of Dwords and the MIC spans Dwords 7 and 8.
The contents of the messages listed below should be used for reference and do not correspond to valid
MCTP messages.

Figure 111: MIC Example 1 – 32 Bytes of 0s

 3 2 1 0

Dword 0 00h 00h 00h 00h

...

Dword 7 00h 00h 00h 00h

Dword 8
(MIC)

8Ah 91h 36h AAh

Figure 112: MIC Example 2 – 32 Bytes of 1s

 3 2 1 0

Dword 0 FFh FFh FFh FFh

...

Dword 7 FFh FFh FFh FFh

Dword 8
(MIC)

62h A8h ABh 43h

Figure 113: MIC Example 3 – 30 Incrementing Bytes from 0x00 to 0x1D

 3 2 1 0

Dword 0 03h 02h 01h 00h

...

Dword 7
(MIC)

92h D7h 1Dh 1Ch

Dword 8
(MIC)

<unused> 1Eh 05h

Figure 114: MIC Example 4 – 32 Decrementing Bytes from 0x1F to 0x00

 3 2 1 0

Dword 0 1Ch 1Dh 1Eh 1Fh

...

Dword 7 03h 02h 01h 00h

Dword 8
(MIC)

11h 3Fh DBh 5Ch

	1 Introduction
	1.1 Overview
	1.2 Scope
	1.2.1 Outside of Scope

	1.3 Theory of Operation
	1.4 Architectural Model
	1.5 Conventions
	1.5.1 Definitions
	1.5.1.1 Controller or NVMe Controller
	1.5.1.2 Controller Management Interface or NVMe Controller Management Interface
	1.5.1.3 Management Controller
	1.5.1.4 Management Endpoint or NVMe Management Endpoint
	1.5.1.5 VPD or Vital Product Data
	1.5.1.6 FRU Information Device
	1.5.1.7 Command Slot
	1.5.1.8 Request Message
	1.5.1.9 Command Message
	1.5.1.10 Control Primitive
	1.5.1.11 Response Message
	1.5.1.12 NVM Subsystem
	1.5.2 Keywords
	1.5.2.1 mandatory
	1.5.2.2 may
	1.5.2.3 optional
	1.5.2.4 R
	1.5.2.5 reserved
	1.5.2.6 shall
	1.5.2.7 should

	1.6 Conventions
	1.6.1 Byte, Word and Dword Relationships

	1.7 References

	2 Physical Layer
	2.1 PCI Express
	2.2 SMBus/I2C
	2.3 Error Handling

	3 Message Transport
	3.1 MCTP Packet
	3.2 MCTP Messages
	3.2.1 Message Fields
	3.2.1.1 Message Integrity Check
	3.2.2 Packet Assembly into Messages

	3.3 Error Handling

	4 Message Processing Model
	4.1 Request Messages
	4.2 Response Messages
	4.2.1 Generic Error Response
	4.2.2 Invalid Parameter Error Response

	4.3 Command Processing Model
	4.4 Control Primitives
	4.4.1 Pause
	4.4.2 Resume
	4.4.3 Abort
	4.4.4 Get State
	4.4.5 Replay

	4.5 Error Handling
	4.5.1 Command Timeouts
	4.5.2 Control Primitive Timeouts

	5 Management Interface Command Set
	5.1 Configuration Get
	5.1.1 SMBus/I2C Frequency (Configuration Identifier 01h)
	5.1.2 Health Status Change (Configuration Identifier 02h)
	5.1.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

	5.2 Configuration Set
	5.2.1 SMBus/I2C Frequency (Configuration Identifier 01h)
	5.2.2 Health Status Change (Configuration Identifier 02h)
	5.2.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

	5.3 Controller Health Status Poll
	5.4 NVM Subsystem Health Status Poll
	5.5 Read NVMe-MI Data Structure
	5.6 Reset
	5.7 VPD Read
	5.8 VPD Write

	6 NVM Express Admin Command Set
	6.1 Request and Response Data
	6.2 Status

	7 PCIe Command Set (optional)
	7.1 PCIe Configuration Read
	7.2 PCIe Configuration Write
	7.3 PCIe I/O Read
	7.4 PCIe I/O Write
	7.5 PCIe Memory Read
	7.6 PCIe Memory Write

	8 NVM Express Management Enhancements
	8.1 Identify Controller
	8.2 Management Interface Specific Features
	8.2.1 Controller Metadata
	8.2.2 Namespace Metadata

	9 Management Architecture
	9.1 Operational Times
	9.2 Vital Product Data
	9.2.1 Common Header
	9.2.2 Product Info Area (offset 8 bytes)
	9.2.3 NVMe MultiRecord Area
	9.2.4 NVMe PCIe Port MultiRecord Area

	9.3 Reset
	9.3.1 NVM Subsystem Reset
	9.3.2 Controller Level Reset
	9.3.3 Management Endpoint Reset

	9.4 Security

	Appendix A – Technical Note: NVM Express Basic Management Command
	Appendix B – Example MCTP Messages & Message Integrity Check

