
NVM ExpressTM Management Interface Revision 1.1b

1

NVM ExpressTM

Management Interface

Revision 1.1b

October 5, 2020

Please send comments and questions to info@nvmexpress.org

mailto:info@nvmexpress.org
mailto:info@nvmexpress.org

NVM ExpressTM Management Interface Revision 1.1b

2

The NVM ExpressTM Management Interface revision 1.1b specification is available for download at
http://nvmexpress.org. The NVM Express Management Interface revision 1.1b specification incorporates
the NVM Express Management Interface revision 1.0a specification ratified on April 8th 2017 along with
NVMe-MI 1.0a ECN 001, ECN 002, and ECN 003, TP 6001, TP 6002, TP 6003, TP 6004, TP 6005, TP
6006, TP 6007, and editorial changes including applying the NVM ExpressTM trademark guidelines. It also
consists of the NVM Express Management Interface revision 1.1 specification ratified on April 29th, 2019
along with NVMe-MI 1.1 ECN 001 and ECN 002.

SPECIFICATION DISLAIMER

LEGAL NOTICE:

© Copyright 2007 to 2020 NVM Express, Inc. ALL RIGHTS RESERVED.

This NVM Express Management Interface revision 1.1b specification is proprietary to the NVM Express,
Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express Management Interface revision 1.1b specification subject,
however, to the Member’s continued compliance with the Company’s Intellectual Property Policy and
Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 to 2020 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such citations
or references to this document you are not permitted to revise, alter, modify, make any derivatives of, or
otherwise amend the referenced portion of this document in any way without the prior express written
permission of NVM Express, Inc. Nothing contained in this document shall be deemed as granting you any
kind of license to implement or use this document or the specification described therein, or any of its
contents, either expressly or impliedly, or to any intellectual property owned or controlled by NVM Express,
Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG
WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS,
WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR
NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property
of their respective owners.

The NVM Express® design mark is a registered trademark of NVM Express, Inc.

NVM Express Workgroup

c/o VTM, Inc.

3855 SW 153rd Drive

Beaverton, OR 97003 USA

info@nvmexpress.org

http://nvmexpress.org/
mailto:info@nvmexpress.org

NVM ExpressTM Management Interface Revision 1.1b

3

Table of Contents

1 INTRODUCTION ... 6

1.1 Overview ... 6
1.2 Scope .. 6

 Outside of Scope ... 7
1.3 Theory of Operation ... 7

 Out-of-Band Theory of Operation .. 7
 In-Band Theory of Operation .. 8

1.4 NVM Subsystem Architectural Model ... 8
1.5 NVMe Storage Device Architectural Model ... 10
1.6 NVMe Enclosure Architectural Model ... 13
1.7 Conventions .. 18
1.8 Definitions ... 19

 Carrier ... 19
 Command Message ... 19
 Command Slot ... 20
 Control Primitive... 20
 NVMe Controller (Controller) .. 20
 NVMe Controller Management Interface (Controller Management Interface) 20
 Enclosure Management.. 20
 Enclosure Services Process ... 20
 Expansion Connector ... 20
 Field-Replaceable Unit (FRU) ... 20
 FRU Information Device ... 20
 In-Band .. 21
 Management Controller .. 21
 Management Endpoint or NVMe Management Endpoint .. 21
 Management Endpoint Buffer ... 21
 NVMe Enclosure .. 21
 NVMe Processing .. 21
 NVMe Storage Device .. 21
 NVMe Storage Device FRU .. 21
 NVMe Subenclosure (Subenclosure) .. 22
 NVMe-MI Message .. 22
 NVM Subsystem .. 22
 Out-of-Band ... 22
 Process ... 22
 Request Message .. 22
 Requester .. 23
 Responder ... 23
 Response Message ... 23
 SMBus/I2C Mux ... 23
 Upstream Connector .. 23
 VPD or Vital Product Data .. 23

1.9 Keywords .. 23
 mandatory ... 23
 may ... 23
 optional .. 24
 R ... 24
 reserved .. 24
 shall... 24
 should.. 24

1.10 Byte, Word, and Dword Relationships .. 24
1.11 References .. 25

2 PHYSICAL LAYER .. 27

NVM ExpressTM Management Interface Revision 1.1b

4

2.1 PCI Express .. 27
2.2 SMBus/I2C .. 27
2.3 Error Handling ... 30

3 MESSAGE TRANSPORT ... 31

3.1 NVMe-MI Messages .. 31
 Message Fields .. 31

3.2 Out-of-Band Message Transport .. 35
 MCTP Packet... 35
 Out-of-Band Error Handling .. 38

3.3 In-Band Tunneling Message Transport .. 38

4 MESSAGE SERVICING MODEL .. 39

4.1 NVMe-MI Messages .. 39
 Request Messages .. 39
 Response Messages .. 40

4.2 Out-of-Band Message Servicing Model .. 43
 Control Primitives ... 45
 Out-of-Band Error Handling .. 53
 Management Endpoint Buffer ... 54

4.3 In-Band Tunneling Message Servicing Model... 55
 NVMe-MI Send Command.. 55
 NVMe-MI Receive Command ... 62

5 MANAGEMENT INTERFACE COMMAND SET .. 68

5.1 Configuration Get .. 71
 SMBus/I2C Frequency (Configuration Identifier 01h) ... 72
 Health Status Change (Configuration Identifier 02h) .. 73
 MCTP Transmission Unit Size (Configuration Identifier 03h) .. 73

5.2 Configuration Set ... 73
 SMBus/I2C Frequency (Configuration Identifier 01h) ... 74
 Health Status Change (Configuration Identifier 02h) .. 74
 MCTP Transmission Unit Size (Configuration Identifier 03h) .. 76

5.3 Controller Health Status Poll .. 76
 Filtering by Controller Type ... 80
 Filtering by Controller Health Status Changed Flags .. 80

5.4 Management Endpoint Buffer Read ... 83
5.5 Management Endpoint Buffer Write ... 84
5.6 NVM Subsystem Health Status Poll ... 85
5.7 Read NVMe-MI Data Structure .. 88
5.8 Reset... 94
5.9 SES Receive ... 95
5.10 SES Send .. 96
5.11 VPD Read ... 97
5.12 VPD Write ... 98

6 NVM EXPRESS ADMIN COMMAND SET ... 100

6.1 Request and Response Data ... 104
6.2 Status .. 105
6.3 Sanitize Operation ... 105

7 PCIE COMMAND SET (OPTIONAL) .. 107

7.1 PCIe Configuration Read ... 109

NVM ExpressTM Management Interface Revision 1.1b

5

7.2 PCIe Configuration Write ... 110
7.3 PCIe I/O Read ... 110
7.4 PCIe I/O Write ... 111
7.5 PCIe Memory Read ... 112
7.6 PCIe Memory Write ... 113

8 NVM EXPRESS MANAGEMENT ENHANCEMENTS ... 115

8.1 Identify Controller .. 115
8.2 Management Interface Specific Features ... 116

 Controller Metadata .. 116
 Namespace Metadata .. 118

9 MANAGEMENT ARCHITECTURE .. 120

9.1 Out-of-Band Operational Times ... 120
9.2 Vital Product Data .. 121

 Common Header .. 122
 Product Info Area (offset 8 bytes).. 122
 NVMe MultiRecord Area ... 124
 NVMe PCIe Port MultiRecord Area ... 125
 Topology MultiRecord Area .. 127

9.3 Reset... 141
 NVM Subsystem Reset .. 141
 Controller Level Reset .. 141
 Management Endpoint Reset ... 142
 SMBus Reset ... 142

9.4 Security ... 142

APPENDIX A – TECHNICAL NOTE: NVM EXPRESS BASIC MANAGEMENT COMMAND 143

APPENDIX B – EXAMPLE MCTP MESSAGES & MESSAGE INTEGRITY CHECK 148

APPENDIX C – EXAMPLE NVME-MI MESSAGES OVER SMBUS/I2C ... 150

NVM ExpressTM Management Interface Revision 1.1b

6

1 Introduction

1.1 Overview

The NVM ExpressTM (NVMeTM) interface is a register-level interface that allows in-band host software to
communicate with an NVM Subsystem. Since this specification builds on the NVM Express specification,
knowledge of the NVM Express specification is assumed.

This specification defines several mechanisms to manage NVMe Storage Devices (refer to section 1.8.18)
or NVMe Enclosures (refer to section 1.8.16). One mechanism allows a Management Controller to
communicate out-of-band with an NVMe Storage Device or NVMe Enclosure over one or more external
interfaces. Another mechanism is the in-band tunneling mechanism which allows the NVMe-MI
Management Interface Command Set to be tunneled in-band via the NVMe Admin Commands NVMe-MI
Send and NVMe-MI Receive to an NVMe Storage Device or NVMe Enclosure. Refer to the NVM Express
specification and section 4.3 of this specification for additional details on the NVMe-MI Send and NVMe-MI
Receive commands.

NVMe Storage Devices and NVMe Enclosures that comply with this specification are allowed to support
only the out-of-band mechanism, only the in-band tunneling mechanism, or both the out-of-band
mechanism and in-band tunneling mechanism.

1.2 Scope

This specification defines an architecture and command set for out-of-band and in-band management of
an NVMe Storage Device as well as an architecture and mechanisms for monitoring and controlling the
elements of an NVMe Enclosure.

This specification defines the following key capabilities for NVMe Storage Devices:

• Discover NVMe Storage Devices that are present and learn capabilities of each NVMe Storage
Device;

• Store data about the host environment enabling a Management Controller or other entity to query
the data later;

• Health and temperature monitoring;

• Multiple concurrent commands to prevent a long latency command from blocking monitoring
operations;

• Out-of-band mechanism is host processor and operating system agnostic;

• A standard format for VPD and defined mechanisms to read/write VPD contents; and

• Preserves data-at-rest security.

This specification defines the following key capabilities for NVMe Enclosures:

• Discover NVMe Enclosures and learn their capabilities;

• Manage and sense the state of NVMe Enclosure elements such as power supplies, cooling
devices, displays, and indicators;

• Multiple concurrent commands to prevent a long latency command from blocking monitoring
operations;

• Out-of-band mechanism is host processor and operating system agnostic;

• Discover NVMe Storage Devices that are present in Enclosure slots; and

• Preserves data-at-rest security.

NVM ExpressTM Management Interface Revision 1.1b

7

1.2.1 Outside of Scope

The architecture and command set are specified apart from any usage model. This specification does not
specify whether the NVMe interface is used to implement a solid-state drive, a main memory, a cache
memory, a backup memory, a redundant memory, etc. Specific usage models are outside the scope of this
specification.

This interface is NVM technology agnostic and is specified at a level that abstracts implementation details
associated with any specific NVM technology. For example, NAND wear leveling, block erases, and other
management tasks are abstracted.

The implementation or use of other published specifications referred to in this specification, even if required
for compliance with the specification, are outside the scope of this specification (e.g., PCI Express,
SMBus/I2C and MCTP).

The management of NVMe over Fabrics is outside the scope of this specification. This specification does
not define new security mechanisms.

This specification does not cover management of non-transparent bridges or PCIe switches. Co-ordination
between multiple Requesters or a Requester and a device other than a Responder is outside the scope of
this specification. Refer to section 1.8 for the definitions of Requester and Responder.

Coordinating concurrency resulting from operations associated with multiple Responders or between host
and Management Endpoint operations is outside the scope of this specification.

The specification of specific Enclosure elements that make up an NVMe Enclosure is outside the scope of
this specification. Support for cards or modules that connect to a device slot element (slot) of an NVMe
Enclosure, that are not NVMe Storage Devices (e.g., GPUs or FPGAs) is outside the scope of this
specification.

An enclosure may support comprehensive management capabilities using SCSI Enclosure Services, basic
management capabilities using transport specific mechanisms, or no management capabilities. An example
of basic enclosure management capabilities is Native PCIe Enclosure Management (NPEM) specified by
the PCI-SIG for PCI Express. The specification of such transport specific basic management capabilities is
outside the scope of this specification. This specification only defines comprehensive management using
SCSI Enclosure Services.

An NVMe Enclosure may contain multiple Enclosure Services Processes. Communication and coordination
between the Enclosure Services Processes that manage NVMe Enclosure elements is outside the scope
of this specification.

1.3 Theory of Operation

This specification is designed to provide a common interface over multiple physical layers (i.e., PCI
Express, SMBus/I2C) for inventory, monitoring, configuration, and change management. This specification
provides the flexibility necessary to manage NVMe Storage Devices or NVMe Enclosures using an out-of-
band mechanism or in-band tunneling mechanism in a variety of host environments and systems. This
specification also defines a FRU Information Device that contains Vital Product Data (refer to section
1.3.1.2).

1.3.1 Out-of-Band Theory of Operation

This specification defines a mechanism for managing NVMe Storage Devices and NVMe Enclosures out-
of-band via the Management Component Transport Protocol (refer to section 1.3.1.1).

NVM ExpressTM Management Interface Revision 1.1b

8

1.3.1.1 Management Component Transport Protocol

The out-of-band mechanism utilizes the Management Component Transport Protocol (MCTP) as the
transport and utilizes existing MCTP SMBus/I2C and PCIe bindings for the physical layer. Command
Messages are submitted to one of two Command Slots associated with a Management Endpoint contained
in an NVM Subsystem. Figure 1 shows the NVMe-M out-of-band protocol layering.

Figure 1: NVMe-MI Out-of-Band Protocol Layering

1.3.1.2 FRU Information Device

This specification defines a mechanism to access a FRU Information Device either via SMBus/I2C as
defined by the IPMI Platform Management FRU Information Storage Definition specification or via the VPD
Read and VPD Write commands. The data stored in the FRU Information Device is referred to as Vital
Product Data (refer to section 9.2). A FRU Information Device may be implemented in a variety of ways
(e.g., a serial EEPROM, one-time programmable memory in an NVMe Controller ASIC, etc.).

1.3.2 In-Band Theory of Operation

This specification defines an in-band tunneling mechanism that utilizes the NVMe Admin Commands
NVMe-MI Send and NVMe-MI Receive. Refer to the NVM Express specification and section 4.3 of this
specification for additional details on the NVMe-MI Send and NVMe-MI Receive commands.

1.4 NVM Subsystem Architectural Model

This specification defines an interface that may be used to manage NVM Subsystems contained within an
NVMe Storage Device or NVMe Enclosure.

Management

Applications (e.g.,

Remote Console)

SMBus/I2C PCIe VDM

MCTP over

SMBus/I2C Binding

MCTP over

PCIe Binding

Management Component Transport Protocol (MCTP)

NVMe Management Interface

Management Controller

(BMC or Host Processor)

Management Applications (e.g., Remote Console)

Physical

Layer

Transport

Layer

Protocol

Layer

Application

Layer

Management

Applications (e.g.,

Remote Console)

NVM ExpressTM Management Interface Revision 1.1b

9

Management of an NVM Subsystem in the in-band tunneling mechanism and the out-of-band mechanism
consists of sending Command Messages and receiving corresponding Response Messages. Command
Messages consist of standard NVMe Admin Commands that target a Controller within the NVM Subsystem;
commands that provide access to the PCI Express configuration, I/O, and memory spaces of a Controller
in the NVM Subsystem; and Management Interface specific commands for inventorying, configuring, and
monitoring of the NVM Subsystem. The Command Messages supported by an NVM Subsystem are
dependent on the mechanism used to send the NVMe-MI Message (i.e., in-band tunneling mechanism or
out-of-band mechanism) and whether the NVM Subsystem is contained within an NVMe Storage Device or
NVMe Enclosure.

When using the in-band tunneling mechanism, the architecture and behavior of an NVM Subsystem is as
defined by the NVM Express specification with extensions defined by this specification. The remainder of
this section describes the architecture and behavior of an NVM Subsystem when the out-of-band
mechanism is used.

The PCIe ports and SMBus/I2C port of an NVM Subsystem may optionally each contain a single NVMe
Management Endpoint (hereafter referred to as simply Management Endpoint). A Management Endpoint
is an MCTP endpoint that is the terminus and origin of MCTP packets/messages and is responsible for
implementing the MCTP Base Protocol, processing MCTP Control Messages, and internal routing of
Command Messages. Each Management Endpoint in an NVM Subsystem has a Port Identifier that is less
than or equal to the Number of Ports (NUMP) field value in the NVM Subsystem Information Data Structure.

Management Interface Request Messages and Response Messages are transported as MCTP messages
with the Message Type set to NVM Express Management Messages over MCTP (refer to the MCTP IDs
and Codes specification). All out-of-band mechanism Command Messages originate with the Management
Controller and result in a Response Message from a Management Endpoint.

Each Management Endpoint advertises its unique capabilities. All Management Endpoints may support the
same commands even though PCIe ports are full duplex with much higher data rates than SMBus (i.e.,
both SMBus/I2C and PCIe VDM are capable of providing the same functionality).

Each NVMe Controller in the NVM Subsystem shall provide an NVMe Controller Management Interface
(hereafter referred to as simply Controller Management Interface). The Controller Management Interface
processes Controller operations on behalf of any Controller (in-band tunneling mechanism) or Management
Endpoint (out-of-band mechanism) in the NVM Subsystem. Controllers or Management Endpoints may
route commands to any NVMe Controller in the NVM Subsystem. A Controller Management Interface
logically processes one operation at a time. A Controller Management Interface is not precluded from
processing two or more operations in parallel; however, there shall always be an equivalent pattern of
sequential operations with the same results.

Figure 2 illustrates an example NVM Subsystem. The NVM Subsystem contains a single Controller and
there is a Management Endpoint associated with the PCIe port.

NVM ExpressTM Management Interface Revision 1.1b

10

Figure 2: NVM Subsystem Associated with Single PCIe Port

NVMe Controller

PCI Function 0

Management

Endpoint

NVM Subsystem

Controller

Management Interface

PCIe

Port

Figure 3 illustrates an example NVM Subsystem that is associated with a dual ported PCIe SSD. The NVM
Subsystem contains one Controller associated with PCIe Port 0 and two Controllers associated with PCIe
Port 1. There is a Management Endpoint associated with the each PCIe port and the SMBus/I2C port. Since
the NVM Subsystem contains a Management Endpoint, all Controllers have an associated Controller
Management Interface.

Figure 3: NVM Subsystem with Dual Ported PCIe Ports and an SMBus/I2C Port

NVMe Controller

PCI Function 0

Management

Endpoint

NVM Subsystem

Controller

Management Interface

PCIe

Port 0

NVMe Controller

PCI Function 0

Management

Endpoint

Controller

Management Interface

PCIe

Port 1

Management

Endpoint

SMBus/I2C

NVMe Controller

PCI Function 1

Controller

Management Interface

1.5 NVMe Storage Device Architectural Model

The architectural model for NVMe Storage Devices that support the in-band tunneling mechanism follows
the architectural model defined in the NVM Express specification.

An NVMe Storage Device that implements the out-of-band mechanism but not the in-band tunneling
mechanism defined in this specification consists of zero or more NVM Subsystems. An NVMe Storage

NVM ExpressTM Management Interface Revision 1.1b

11

Device that implements the in-band tunneling mechanisms defined in this specification consists of one or
more NVM Subsystems. Each NVM Subsystem includes one or more Management Endpoints.

An NVMe Storage Device that is a Field-Replaceable Unit (FRU) is a physical component, device, or
assembly that is able to be removed and replaced (e.g., by an end user or technician) without having to
replace the entire system in which it is contained. Examples of NVMe Storage Device Field-Replaceable
Units include a U.2 PCIe SSD, a PCI Express Card Electromechanical (CEM) add-in card, and an M.2
module. The FRU referenced by the FRU Globally Unique Identifier (FGUID) field in the NVM Express
specification shall be an NVMe Storage Device Field-Replaceable Unit.

There are many variants of an NVMe Storage Device. One example is an NVMe Storage Device that only
contains a single NVM Subsystem. Another example may contain no NVM Subsystems and instead have
one or more Expansion Connectors for adding additional NVMe Storage Device FRUs. Such an NVMe
Storage Device is referred to as a Carrier. In another example, the NVMe Storage Device may contain one
or more NVM Subsystems and one or more Expansion Connectors. NVMe Storage Devices may contain
PCIe switches which connect to one or more NVM Subsystems or Expansion Connectors. NVMe Storage
Devices may contain SMBus/I2C Muxes that connect to one or more NVM Subsystems or Expansion
Connectors.

This specification defines Vital Product Data (VPD) that utilizes the format defined in the IPMI Platform
Management FRU Information Storage Definition and is stored in a FRU Information Device. VPD is
accessible over any port that supports the out-of-band mechanism or in-band tunneling mechanism. If the
NVMe Storage Device has an SMBus/I2C port, then the VPD is accessible using the access mechanism
over I2C as defined in the IPMI Platform Management FRU Information Storage Definition.

If an NVMe Storage Device contains multiple NVM Subsystems, then the FRU Information Device
associated with each NVM Subsystem is optional since the required FRU Information Device accessible
via the Upstream Connector describes the entire NVMe Storage Device. The contents of these additional
FRU Information Devices is out of scope for this specification. Refer to section 9.2 for more information

Figure 4 illustrates an NVMe Storage Device that is a single-port PCIe SSD with the FRU Information
Device implemented by the NVM Subsystem. Figure 5 illustrates an NVMe Storage Device that is a dual-
port PCIe SSD with an SMBus/I2C port and a FRU Information Device implemented using a Serial
EEPROM.

Figure 4: Single-Port PCIe SSD

NVMe Controller

PCI Function 0

Management

Endpoint

NVM Subsystem

Controller

Management Interface

NVMe Storage Device

FRU

Information

Device

PCIe

Port 0

NVM ExpressTM Management Interface Revision 1.1b

12

Figure 5: Dual-Port PCIe SSD with SMBus/I2C

NVMe Controller

PCI Function 0

Management

Endpoint

NVM Subsystem

Controller

Management Interface

PCIe

Port 0

NVMe Controller

PCI Function 0

Management

Endpoint

Controller

Management Interface

PCIe

Port 1

Management

Endpoint

SMBus/I2C

NVMe Controller

PCI Function 1

Controller

Management Interface

FRU

Information

Device

NVMe Storage Device

An example U.2 form factor NVMe Storage Device with Expansion Connectors (i.e., a Carrier) is shown in
Figure 6. This Carrier has two M.2 Expansion Connectors for connecting two M.2 NVMe Storage Device
FRUs. The Carrier and each M.2 NVMe Storage Device are separate NVMe Storage Device FRUs, each
with their own FRU Information Device. The FRU Information Device on the Carrier is at address A4h and
the FRU Information Devices on each M.2 NVMe Storage Device has a default address of A6h and supports
the SMBus Address Resolution Protocol (ARP). ARP is used after power is applied to reassign the
conflicting A6h addresses before the M.2 FRU Information devices are read. ARP would also be used to
reassign the conflicting MCTP addresses and potentially additional elements.

Figure 6: NVMe Storage Device with Expansion Connectors (i.e., a Carrier)

Expansion

Connector

Expansion

Connector

NVM

Subsystem 0
NVM

Subsystem 1

PCIe Port

Lanes 0-1

Carrier

NVMe

Storage

Device

PCIe Port

Lanes 2-3

SMBus/I2C

With ARP

FRU

Information

Device

FRU Information

Device

FRU Information

Device

M.2

NVMe Storage

Device

M.2

NVMe Storage

Device

Figure 7 shows an NVMe Storage Device that contains two NVM Subsystems implemented using soldered
down BGA packages and a FRU Information Device at address A6h. An NVMe Storage Device without
Expansion Connectors that implements an SMBus/I2C port always contains a FRU Information Device at
address A6h directly connected to the Upstream Connector. An SMBus/I2C Mux is used in this example
instead of ARP to eliminate SMBus/I2C address collisions. The SMBus/I2C Mux is configured by a

NVM ExpressTM Management Interface Revision 1.1b

13

Management Controller prior to communications with the selected NVM Subsystem. The FRU Information
Device contains the details necessary to configure the SMBus/I2C Mux.

Figure 7: NVMe Storage Device with two NVM Subsystems and an SMBus/I2C Mux

SMBus/I2C Mux

PCIe SSD

PCIe

Port

SMBus/I2C
NVM

Subsystem 0
NVM

Subsystem 1

FRU

Information

Device

PCIe Switch

Channel 0

Channel 1

1.6 NVMe Enclosure Architectural Model

An NVMe Enclosure is a platform, card, module, box, rack, or set of boxes that may provide power, cooling,
and mechanical protection for one or more NVM Subsystems. These NVM Subsystems may be part of the
NVMe Enclosure itself and/or may be contained in NVMe Storage Devices FRUs that connect to the NVMe
Enclosure through one or more NVMe Enclosure slots. An NVMe Enclosure contains one or more NVM
Subsystems. NVM Subsystems that are part of an NVMe Enclosure may support just the in-band tunneling
mechanism, just the out-of-band mechanism, or both.

An NVMe Enclosure may contain elements that support operation of the NVMe Enclosure (e.g., power
supplies, fans, locks, temperature sensors, current sensors, and voltage sensors). An NVMe Enclosure
may also contain displays and/or indicators that indicate the state of the NVMe Enclosure (e.g., state of
elements, NVM Subsystems, or RAID volumes) and/or NVMe Storage Devices that connect to the NVMe
Enclosure. Some of the elements that make up an NVMe Enclosure may be removable and replaceable
while the NVMe Enclosure continues to operate normally.

SCSI Enclosure Services - 3 (SES-3) is a standard developed by the American National Standards Institute
T10 committee for management of enclosures using the SCSI architecture. While the NVMe and SCSI
architectures differ, the elements of an NVMe Enclosure and a SCSI enclosure are similar and the
capabilities required to manage elements of an NVMe Enclosure and a SCSI enclosure are similar. Thus,
this specification leverages SES for Enclosure Management. SES manages the elements of an enclosure
using control and status diagnostic pages transferred using SCSI commands (refer to Enclosure Control
and Enclosure Status diagnostic pages in SES-3). This specification uses these same control and status
diagnostic pages but transfers them using the SES Send and SES Receive commands. this specification
supports only the standalone Enclosure Services Process model as defined in SES.

A Requester manages an NVMe Enclosure using SES Send and SES Receive commands that are part of
the Management Interface Command Set (refer to section 5). The SES Send command provides the
functionality of the SES-3 SCSI SEND DIAGNOSTIC command and is used by a Requester to send SES
control type diagnostic pages to modify the state of the NVMe Enclosure. The SES Receive command
provides the functionality of the SES-3 SCSI RECEIVE DIAGNOSTIC RESULTS command and is used by
a Requester to retrieve SES status type diagnostic pages that contain various status and warning
information available from the NVMe Enclosure.

Refer to SES-3 for a list and description of SES control type diagnostic pages and SES status type
diagnostic pages. The mapping of bytes in SES pages to NVMe-MI Request and Response Data is one-
to-one where byte x of the SES page maps to byte x in the NVMe-MI Request or Response Data (e.g., byte
zero of the SES control type diagnostic page corresponds to byte zero of NVMe-MI Request Data). The

NVM ExpressTM Management Interface Revision 1.1b

14

NVMe firmware update process is used (i.e., Firmware Image Download and Firmware Commit commands)
to update NVMe firmware. Download Microcode Control and Status diagnostic pages, if supported, shall
only be supported on NVMe Enclosure elements.

An Enclosure Services Process, that is logically part of the NVMe Enclosure, is responsible for managing
NVMe Enclosure elements and participates in servicing SES Send and SES Receive commands issued by
a Requester. Unlike the SES-3 Enclosure Services Process model that maintains state for each I_T nexus
(refer to SES-3), unless otherwise noted, this specification requires an NVMe Enclosure to maintain a single
global state regardless of the Requester or path used to access that state.

An NVMe Enclosure may contain of one or more Subenclosures (refer to SES-3). Each Subenclosure is
identified by an SES-3 defined one-byte Subenclosure identifier. If multiple Subenclosures are present,
then one of the Subenclosures is designated as the primary Subenclosure and the remaining
Subenclosures are secondary Subenclosures. When an NVMe Enclosure consists of only a single
Subenclosure, then that Subenclosure is the primary Subenclosure. The Enclosure Services Process
associated with the primary Subenclosure is the one that provides access to NVMe Enclosure services
information for all Subenclosures. Refer to SES-3 for more information.

Associated with each NVMe Enclosure slot is an SES element that may be used to manage the slot. Refer
to SES-3 for more information.

Figure 8 illustrates an example NVMe Enclosure that contains one NVM Subsystem. This NVMe Enclosure
has multiple ports that Requesters may use to communicate with the NVMe Enclosure. It also has multiple
slots that are used to connect NVMe Storage Devices to the NVMe Enclosure (e.g., PCIe). The mapping
of NVMe Enclosure ports to NVM Subsystems, NVMe Controllers within these NVM Subsystems, and
NVMe Storage Devices is vendor specific and outside the scope of this specification. An NVMe Enclosure
shall contain one or more NVM Subsystems used for Enclosure Management. The NVMe Enclosure in this
example may be managed using the out-of-band mechanism via the Responder (Management Endpoint in
Figure 8) or using the in-band tunneling mechanism via the NVMe Controller.

Figure 8: Example NVMe Enclosure

Power

Supplies

Cooling

Objects

Temperature

Sensors

NVMe Enclosure

NVM Subsystem

...

Other

Objects

...

NVMe

Controller

Controller

Management Interface

Managment

Endpoint

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Slot Slot Slot Slot

NVM ExpressTM Management Interface Revision 1.1b

15

Figure 9 illustrates an example NVMe Enclosure that contains multiple NVM Subsystems and no NVMe
Storage Devices. This may represent a software storage appliance. The NVM Subsystems and Controllers
contained within these NVM Subsystems may be real or emulated in software. Not all Controllers within
these NVM Subsystems are required to have the same capabilities. Some of the possible capability
configurations are illustrated in this example. Some Controllers in this example simply provide access to
namespaces; others provide access to namespaces and support for the in-band tunneling mechanism; and
others provide access to namespaces and support for the out-of-band mechanism.

Figure 9: Example NVMe Enclosure with Multiple NVM Subsystems

Power

Supplies

Cooling

Objects

Temperature

Sensors

NVMe Enclosure

Other

Objects

...

NVMe

Controller

Management

Endpoint

NVMe

Controller

Controller Management

Interface

Enclosure Services Process

NVMe

Controller

NVMe

Controller

NVMe

Controller

NVMe

Controller
...

...

NVM Subsystem
Controller Management

Interface

Figure 10 shows an Enclosure that supports two Enclosure Services Processes. Elements of the NVMe
Enclosure may be accessible by one or both of these Enclosure Services Processes. The coordination of
access to elements by multiple Enclosure Services Processes is outside the scope of this specification.

NVM ExpressTM Management Interface Revision 1.1b

16

Figure 10: Example NVMe Enclosure with Multiple Enclosure Services Processes

Power

Supplies

Cooling

Objects

Temperature

Sensors

NVMe Enclosure

Other

Objects

...

NVM Subsystem

NVMe

Controller

Controller

Management Interface

Management

Endpoint

Enclosure

Services Process

...
NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Slot Slot Slot Slot

NVM Subsystem

NVMe

Controller

Controller

Management Interface

Management

Endpoint

Enclosure

Services Process

Figure 11 shows an NVMe Enclosure that consists of multiple Subenclosures. Each Subenclosure in this
example contains an Enclosure Services Process. NVMe Enclosure services information from
Subenclosures is combined into a single set of SES diagnostic pages by the primary Subenclosure. A
Subenclosure identifier is used to distinguish from which Subenclosure the information was obtained. Refer
to SES-3 for more information. A primary Subenclosure may access NVMe Enclosure services information
in Subenclosures using the out-of-band mechanism, the in-band tunneling mechanism, or both; or may use
a vendor specific interface. This example illustrates the use of a vendor specific interface.

NVM ExpressTM Management Interface Revision 1.1b

17

Figure 11: Example NVMe Enclosure with Subenclosures

Power

Supplies

Cooling

Objects

Temperature

Sensors

Primary Subenclosure

NVM Subsystem

...

Other

Objects

...

NVMe

Controller

Controller

Management Interface

Management

Endpoint

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Vendor Specific

Interface

Power

Supplies

Cooling

Objects

Temperature

Sensors

Secondary Subenclosure

...

Other

Objects

...

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Vendor Specific

Interface

Power

Supplies

Cooling

Objects

Temperature

Sensors

Secondary Subenclosure

...

Other

Objects

...

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Vendor Specific

Interface

NVMe Enclosure

...

Slot Slot Slot Slot

Slot Slot Slot Slot

Slot Slot Slot Slot

NVM Subsystem

NVMe

Controller

Controller

Management Interface

Management

Endpoint

NVM Subsystem

NVMe

Controller

Controller

Management Interface

Management

Endpoint

NVM ExpressTM Management Interface Revision 1.1b

18

Certain NVMe Enclosure behaviors are managed by setting controls and testing status of elements within
an NVMe Enclosure. An Enclosure Services Process may monitor a variety of warning and error conditions.
These conditions may be communicated to the Requester through polling by the Requester (refer to
Enclosure Services Management mode page in SES-3 for details).

The mapping of SES-3 sense keys and additional sense codes associated with CHECK CONDITION status
to NVMe-MI Response Message Status values is shown in Figure 12. The asynchronous event notification
reporting mechanism described in SES-3 is not supported by this specification.

Figure 12: Mapping of SES-3 Sense Keys and Additional Sense Codes to Response Message Status

Response Message Status Values
SES-3

Sense Key Additional Sense Code

Enclosure Services Failure

HARDWARE ERROR

ENCLOSURE SERVICES FAILURE

Enclosure Services Transfer Failure
ENCLOSURE SERVICES TRANSFER
FAILURE

Enclosure Failure ENCLOSURE FAILURE

Enclosure Services Transfer
Refused

HARDWARE ERROR or ILLEGAL
REQUEST

ENCLOSURE SERVICES TRANSFER
REFUSED

Unsupported Enclosure Function ILLEGAL REQUEST UNSUPPORTED ENCLOSURE FUNCTION

Enclosure Services Unavailable NOT READY ENCLOSURE SERVICES UNAVAILABLE

Enclosure Degraded RECOVERED ERROR WARNING – ENCLOSURE DEGRADED

1.7 Conventions

Hardware shall return zero for all bits, fields, and registers that are marked as reserved. The Requester
should not rely on a value of zero being returned as future revisions of this specification may contain non-
zero values. The Requester should write all reserved bits and registers with the value of zero. Future
revisions of this specification may rely on a zero value being written for backward compatibility.

Hexadecimal (i.e., base 16) numbers are written with a lower case “h” suffix (e.g., 0FFFh, 80h).
Hexadecimal numbers larger than eight digits are represented with an underscore character dividing each
group of eight digits (e.g., 1E_DEADBEEFh).

Binary (i.e., base 2) numbers are written with a lower case “b” suffix (e.g., 1001b, 10b). Binary numbers
larger than four digits are written with an underscore character dividing each group of four digits (e.g.,
1000_0101_0010b).

All other numbers are decimal (i.e., base 10). A decimal number is represented in this specification by any
sequence of digits consisting of only the Western-Arabic numerals 0 to 9 not immediately followed by a
lower-case b or a lower-case h (e.g., 175). This specification uses the following conventions for representing
decimal numbers:

a) the decimal separator (i.e., separating the integer and fractional portions of the number) is a period;
b) the thousands separator (i.e., separating groups of three decimal digits in a portion of the number)

is a comma;
c) the thousands separator is used in only the integer portion of a number and not the fractional portion

of a number; and
d) the decimal representation for a year does not include a comma (e.g., 2018 instead of 2,018).

SMBus/I2C addresses are written as 8-bit hex values where bits 7:1 contain the 7-bit SMBus/I2C address
and bit 0 is cleared to ‘0’.

When a register field is referred to in the document, the convention used is “Register Symbol.Field Symbol”
(e.g., the Controller Status (CSTS) register Shutdown Status (SHST) field is referred to by the name

NVM ExpressTM Management Interface Revision 1.1b

19

CSTS.SHST). If the register field is an array of bits, the field is referred to as “Register Symbol.Field Symbol
(array offset to element)”.

A 0’s based value is a numbering scheme for which the number 0h represents a value of 1h and thus
produces the pattern of 0h represents 1h, 1h represents 2h, 2h represents 3h, etc. In this numbering
scheme, there is not a method for specifying the value of 0h. Values in this specification are 1-based (i.e.,
the number 1h represents a value of 1h, 2h represents 2h, etc.) unless otherwise specified.

Some parameters are defined as a string of ASCII or UTF-8 characters. ASCII data fields shall contain only
code values 20h to 7Eh. UTF-8 is backwards compatible with ASCII encoding and supports additional
characters with variable length encoding. For the string “Copyright”, the character “C” is the first byte, the
character “o” is the second byte, etc. The string is left justified and shall be padded with spaces (ASCII
character 20h) to the right if necessary.

A range of numeric values is represented in this specification in the form “a to z”, where a is the first value
included in the range, all values between a and z are included in the range, and z is the last value included
in the range (e.g., the representation “0h to 3h” includes the values 0h, 1h, 2h, and 3h).

Size values are shown in binary units or decimal units. The symbols used to represent these values are as
shown in Figure 13.

Figure 13: Decimal and Binary Units

Decimal Binary

Symbol
Power

(base-10)
Symbol Power (base-2)

kilo / k 103 kibi / Ki 210

mega / M 106 mebi / Mi 220

giga / G 109 gibi / Gi 230

tera / T 1012 tebi / Ti 240

peta / P 1015 pebi / Pi 250

exa / E 1018 exbi / Ei 260

zetta / Z 1021 zebi / Zi 270

yotta / Y 1024 yobi / Yi 280

Implementation Specific (Impl Spec) – the controller has the freedom to choose its implementation.

Hardware Initialize (HwInit) – The default state is dependent on NVM Express controller and system
configuration. The value is initialized at reset (e.g., by an expansion ROM, or in the case of integrated
devices, by a platform BIOS).

1.8 Definitions

1.8.1 Carrier

An NVMe Storage Device FRU with one or more Expansion Connectors and zero or more NVM
Subsystems.

1.8.2 Command Message

A type of Request Message that contains an NVMe Admin Command, PCIe Command, or NVMe-MI
Command.

NVM ExpressTM Management Interface Revision 1.1b

20

1.8.3 Command Slot

A logical target within a Management Endpoint where a Management Controller sends a Request Message.
Each Management Endpoint has exactly two Command Slots.

1.8.4 Control Primitive

Single-packet Request Messages sent from a Management Controller to a Management Endpoint to affect
the servicing of a previously issued Command Message or get the state of a Command Slot and
Management Endpoint. Control Primitives are applicable only in the out-of-band mechanism and are
prohibited in the in-band tunneling mechanism.

1.8.5 NVMe Controller (Controller)

Refer to the NVM Express specification.

1.8.6 NVMe Controller Management Interface (Controller Management Interface)

An interface associated with each NVMe Controller in the NVM Subsystem that is responsible for
processing management operations on behalf of a Management Endpoint.

1.8.7 Enclosure Management

The discovery, monitoring and control of elements that make up an NVMe Enclosure.

1.8.8 Enclosure Services Process

A process that implements Enclosure services for an NVMe Enclosure that supports Enclosure
Management. Refer to SCSI Enclosure Services - 3 (SES-3) for more information.

1.8.9 Expansion Connector

A connector that allows an NVMe Storage Device FRU or cable to be attached or removed from a Carrier.
Expansion Connectors may be empty or populated. A connector to a non-removable NVMe Storage Device
is not an Expansion Connector.

1.8.10 Field-Replaceable Unit (FRU)

A physical component, device, or assembly in a system that is able to be removed and replaced (e.g., by
an end user or technician) without having to replace the entire system in which it is contained. The Field-
Replaceable Unit described in this specification is an NVMe Storage Device Field-Replaceable Unit (refer
to section 1.8.19).

1.8.11 FRU Information Device

A logical or physical device used to hold the VPD. A FRU Information Device may be implemented in a
variety of ways (e.g., a serial EEPROM, one-time programmable memory in silicon, etc.).

NVM ExpressTM Management Interface Revision 1.1b

21

1.8.12 In-Band

Per the Management Component Transport Protocol (MCTP) Overview White Paper, in-band management
is management that operates with the support of hardware components that are critical to and used by the
operating system. The in-band communication path defined by this specification is via the NVMe Admin
Queue using the NVMe-MI Send and NVMe-MI Receive commands from host software to an NVMe
Controller. Refer to the NVM Express specification and section 4.3 of this specification for additional details
on the NVMe-MI Send and NVMe-MI Receive commands.

1.8.13 Management Controller

A device (e.g., Baseboard Management Controller) responsible for platform management that uses the
NVM Express Management Interface to communicate to Management Endpoints.

1.8.14 Management Endpoint or NVMe Management Endpoint

An MCTP endpoint associated with an NVM Subsystem (e.g., an NVMe SSD or NVMe Enclosure) that is
the terminus and origin of MCTP packets/messages and which processes Request Messages.

1.8.15 Management Endpoint Buffer

An intermediate buffer defined by this specification to allow servicing out-of-band NVMe-MI Messages that
have a Message Body that is larger than the 4,224-byte limit that is specified by the NVMe Management
Messages over MCTP Binding Specification.

1.8.16 NVMe Enclosure

A platform, card, module, box, rack, or set of boxes that may provide power, cooling, mechanical protection
and/or external interfaces for zero or more NVMe Storage Device FRUs. An NVMe Enclosure contains one
or more NVM Subsystems and one or more Enclosure Services Processes.

1.8.17 NVMe Processing

NVMe command processing as defined by the NVM Express specification. The term NVMe Processing is
used to distinguish command processing as defined by the NVM Express specification from the Command
Message processing defined by this specification (refer to section 1.8.24).

1.8.18 NVMe Storage Device

A logical or physical component, device, or assembly that contains at least one NVM Subsystem or
Expansion Connector, at least one Upstream Connector, and at least one FRU Information Device. An
NVMe Storage Device that implements the out-of-band mechanism contains at least one Management
Endpoint and a Controller Management Interface per Controller. An NVMe Storage Device contains zero
or more PCIe switches and SMBus/I2C Muxes. An NVMe Storage Device shall comply with the NVM
Express specification. In this specification, NVMe Storage Devices shall also comply with this specification.

1.8.19 NVMe Storage Device FRU

An NVMe Storage Device that is able to be removed and replaced (e.g., by an end user or technician)
without having to replace the entire system in which it is contained. Examples of NVMe Storage Device

NVM ExpressTM Management Interface Revision 1.1b

22

Field-Replaceable Units include a U.2 PCIe SSD, a PCI Express Card Electromechanical add-in card, or
an M.2 module.

1.8.20 NVMe Subenclosure (Subenclosure)

A portion of an NVMe Enclosure accessed through a primary NVMe Enclosure’s Enclosure Services
Process. Refer to SCSI Enclosure Services - 3 (SES-3) for more information.

1.8.21 NVMe-MI Message

A type of MCTP Message that is defined by this specification in sections 3.1 and 4.1. See the MCTP IDs
and Codes specification and the NVMe Management Messages over MCTP Binding Specification for more
details on this type of MCTP Message (note that NVMe-MI Messages are referred to as NVM Express
Management Messages over MCTP in these specifications).

1.8.22 NVM Subsystem

This specification extends the definition of an NVM Subsystem defined in the NVM Express specification
(e.g., by adding a Management Endpoint, Controller Management Interface, etc.). NVMe Enclosures and
NVMe Storages devices that are not Carriers have one or more NVM Subsystems. Carriers have zero or
more NVM Subsystems.

1.8.23 Out-of-Band

Per the Management Component Transport Protocol (MCTP) Overview White Paper, out-of-band
management is management that operates with hardware resources and components that are independent
of the operating system’s control. The out-of-band communication paths supported by this specification are
via MCTP over SMBus/I2C or MCTP over PCIe VDM from a Management Controller to a Management
Endpoint. In addition, this specification supports the out-of-band access mechanism defined by the IPMI
Platform Management FRU Information Storage Definition specification for accessing a FRU Information
Device from a Management Controller over SMBus/I2C.

1.8.24 Process

This is the state when a Command Message is processed. Processing of a Command Message consists
of checking for errors with the Command Message and performing the actions specified by the Command
Message. This state is applicable in both the out-of-band mechanism and the in-band tunneling mechanism.
Refer to section 4.2 for additional details on the Process state in the out-of-band mechanism. Refer to
section 4.3 for additional details on the Process state in the in-band tunneling mechanism.

This specification uses the terms process/processing/processed to refer to actions performed in the
Process state. These terms are distinct from the NVMe Processing term used to describe NVMe command
processing as defined by the NVM Express specification (refer to section 1.8.17 in this specification).

1.8.25 Request Message

An NVMe-MI Message originating from a Requester. A Request Message may be a Command Message
or a Control Primitive. Request Messages may be used in both the out-of-band mechanism and the in-band
tunneling mechanism.

NVM ExpressTM Management Interface Revision 1.1b

23

1.8.26 Requester

The entity that sends Request Messages and receives Response Messages. For the out-of-band
mechanism, the Requester is a Management Controller. For the in-band tunneling mechanism, the
Requester is host software.

1.8.27 Responder

The entity that receives Request Messages and sends back Response Messages. For the out-of-band
mechanism, the Responder is a Management Endpoint. For the in-band tunneling mechanism, the
Responder is an NVMe Controller.

1.8.28 Response Message

An NVMe-MI Message originating from a Responder in response to a Request Message. Response
Messages may be used in both the out-of-band mechanism and the in-band tunneling mechanism.

1.8.29 SMBus/I2C Mux

A bidirectional SMBus/I2C fan-out multiplexer with one upstream channel and one or more downstream
channels configured by an I2C command from a Management Controller to connect zero or more
downstream channels to the upstream channel. Each downstream channel may be connected to devices
with SMBus/I2C ports. This multiplexer permits multiple devices to use the same SMBus/I2C addresses as
long as they are on separate channels.

1.8.30 Upstream Connector

A connector on the NVMe Storage Device or NVMe Enclosure to which a Requester attaches. It may be a
physical connector as in U.2 form factors, solder balls as in a BGA form factor, or PCB trace fingers as in
a CEM Add in Card or EDSFF form factor. An Upstream Connector may include multiple communications
ports, control signals, and power supply rails.

1.8.31 VPD or Vital Product Data

Field-Replaceable Unit (FRU) Information which is stored in a FRU Information Device. This specification
defines a standard VPD format for NVMe Storage Devices.

1.9 Keywords

Several keywords are used to differentiate between different levels of requirements.

1.9.1 mandatory

A keyword indicating items to be implemented as defined by this specification.

1.9.2 may

A keyword that indicates flexibility of choice with no implied preference.

NVM ExpressTM Management Interface Revision 1.1b

24

1.9.3 optional

A keyword that describes features that are not required by this specification. However, if any optional
feature defined by the specification is implemented, the feature shall be implemented in the way defined by
the specification.

1.9.4 R

“R” is used as an abbreviation for “reserved” when the figure or table does not provide sufficient space for
the full word “reserved”.

1.9.5 reserved

A keyword indicating reserved bits, bytes, words, fields, and opcode values that are set-aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other
specifications. A reserved bit, byte, word, field, or register shall be cleared to zero, or in accordance with a
future extension to this specification. The recipient shall not check the value of reserved bits, bytes, words,
or fields.

1.9.6 shall

A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory
requirements to ensure interoperability with other products that conform to the specification.

1.9.7 should

A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “it is
recommended”.

1.10 Byte, Word, and Dword Relationships

Figure 14 illustrates the relationship between bytes, words, and dwords. This specification specifies data in
a little-endian format.

NVM ExpressTM Management Interface Revision 1.1b

25

Figure 14: Byte, Word, and Dword Relationships

7

6

5

4

3

2

1

0 bit

 byte

 1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0 bit

 word

 byte 1 byte 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0 bit

 dword

word 1 word 0 word

byte 3 byte 2 byte 1 byte 0 byte

1.11 References

I2C Bus specification, revision 6.0. Available from http://www.i2c-bus.org

IPMI Platform Management FRU Information Storage Definition 1.0, Version 1.3. Available from
http://www.intel.com.

INCITS 518-2017 Information Technology – SCSI Enclosure Services – 3 (SES-3). Available from
https://webstore.ansi.org/.

MCTP Base Specification (DSP0236), version 1.3.0. Available from http://www.dmtf.org.

http://www.i2c-bus.org/
http://www.intel.com/
https://webstore.ansi.org/
http://www.dmtf.org/

NVM ExpressTM Management Interface Revision 1.1b

26

MCTP IDs and Codes (DSP0239), version 1.5.0. Available from http://dmtf.org.

MCTP Overview White Paper (DSP2016), version 1.0.0. Available from http://dmtf.org.

MCTP PCIe VDM Transport Binding Specification (DSP0238), version 1.1.0. Available from
http://www.dmtf.org.

MCTP SMBus/I2C Transport Binding Specification (DSP0237), version 1.1.0. Available from
http://www.dmtf.org.

NVM Express specification, revision 1.3a. Available from http://www.nvmexpress.org.

NVMe™ (NVM Express™) Management Messages over MCTP Binding specification (DSP0235),
revision 1.0.1. Available from http://www.dmtf.org.

PCI Express Base Specification, revision 4.0. Available from http://www.pcisig.com.

System Management Bus (SMBus) Specification, revision 3.1. Available from http://www.smbus.org.

http://dmtf.org/
http://dmtf.org/
http://www.dmtf.org/
http://www.dmtf.org/
http://www.nvmexpress.org/
http://www.dmtf.org/
http://www.pcisig.com/
http://www.smbus.org/

NVM ExpressTM Management Interface Revision 1.1b

27

2 Physical Layer

This section describes the physical layers supported by this specification for NVMe Storage Devices or
NVMe Enclosures.

2.1 PCI Express

PCI Express is used as a physical layer in both the out-of-band mechanism and the in-band tunneling
mechanism in this specification.

For the out-of-band mechanism, a PCIe port in an NVMe Storage Device or NVMe Enclosure may
implement a Management Endpoint. If the PCIe port implements a Management Endpoint, the PCIe port
shall support MCTP over PCIe Vendor Defined Messages (VDMs) as specified by the Management
Component Transport Protocol (MCTP) PCIe VDM Transport Binding Specification.

For the in-band tunneling mechanism, host software issues NVMe Admin Commands (NVMe-MI Send and
NVMe-MI Receive) to the NVMe Admin Queue over PCI Express. Refer to the NVM Express specification
and section 4.3 of this specification for additional details on the NVMe-MI Send and NVMe-MI Receive
commands.

2.2 SMBus/I2C

This section defines the requirements for an NVMe Storage Device or NVMe Enclosure that implements
an SMBus/I2C port. The SMBus/I2C physical layer is only applicable for the out-of-band mechanism.

If an NVMe Storage Device or NVMe Enclosure implements an NVM Subsystem with a Management
Endpoint associated with an SMBus/I2C port, then that port shall comply to the Management Component
Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification.

An NVM Subsystem may also support the NVMe Basic Management Command for health and status
polling. The NVMe Basic Management Command is defined as an informative technical note in Appendix
A, though it is not recommended for new designs.

Figure 15 lists SMBus/I2C elements that are supported on an NVMe Storage Device or NVMe Enclosure.
For each SMBus/I2C element, the default SMBus/I2C address is provided as well as the conditions under
which the SMBus/I2C element is required on an NVMe Storage Device or NVMe Enclosure. The presence
or absence of Expansion Connectors on an NVMe Storage Device determines which of the two mutually
exclusive SMBus/I2C addresses is used for the FRU Information Device. Using a different SMBus/I2C
address for the FRU Information Device on NVMe Storage Devices that are Carriers versus non-Carriers
avoids SMBus/I2C address conflict when Expansion Connectors are populated with NVMe Storage
Devices.

ARP support on SMBus/I2C elements is optional unless there are multiple SMBus/I2C elements in the
NVMe Storage Device or NVMe Enclosure with the same default SMBus/I2C address are present on the
same SMBus/I2C channel.

Figure 15: SMBus/I2C Elements and Requirements

SMBus/I2C
Element

Default SMBus/I2C Address
SMBus ARP

Support
Required Element Presence

Hex
Format Binary Format

1

FRU
Information

Device
A6h 1010_011xb Optional

Required on an NVMe Storage Device with no
Expansion Connectors. Undefined on NVMe
Enclosures.

FRU
Information

Device
A4h 1010_010xb Optional

Required on Carriers (i.e., an NVMe Storage
Device with one or more Expansion Connectors).
Undefined on NVMe Enclosures.

NVM ExpressTM Management Interface Revision 1.1b

28

Figure 15: SMBus/I2C Elements and Requirements

SMBus/I2C
Element

Default SMBus/I2C Address
SMBus ARP

Support
Required Element Presence

Hex
Format Binary Format

1

SMBus/I2C
Management

Endpoint
3Ah 0011_101xb Optional

Required if an NVMe Storage Device or NVMe
Enclosure an SMBus/I2C Management Endpoint.

SMBus/I2C
Mux E8h 1110_100xb Optional

For NVMe Storage Devices, required if there is
more than one SMBus/I2C element on any
SMBus/I2C channel with the same SMBus/I2C
address that does not support ARP. Undefined on
NVMe Enclosures.

Basic
Management

Command
2

D4h 1101_010xb Optional
For NVMe Storage Devices, not recommended
for new designs. Undefined on NVMe Enclosures.

NOTES:
1. The x represents the SMBus/I2C read/write bit.
2. The NVMe Basic Management Command is defined in Appendix A as an informative technical note.

Host platforms expecting to be used with one or more Management Endpoints (e.g., data center platforms
and workstations) should isolate SMBus/I2C channels to avoid a Management Endpoint conflicting with the
address of another SMBus/I2C element. An SMBus/I2C address conflict may occur when a Management
Endpoint that does not support ARP is used with platforms that do not isolate SMBus/I2C channels (e.g.,
some client platforms). ARP may be used to dynamically reassign SMBus/I2C addresses in a system when
supported by both the Management Controller and the NVMe Storage Devices or NVMe Enclosure.

SMBus/I2C elements that support ARP should be implemented as Default Slave Address (DSA) devices
as defined by the SMBus specification. These devices should not issue “Notify ARP Master” commands.

If ARP is supported by an NVM Subsystem, then all SMBus/I2C elements associated with that NVM
Subsystem shall use the SMBus Address Resolution Protocol Unique Device Identifier (UDID) shown in
Figure 16. The ARP UDID is a unique identifier. The UDID Vendor ID bits 30 and 31 allow up to four
SMBus/I2C elements to be grouped together with the same NVM Subsystem. The only difference within
this group of UDIDs is the most significant two bits of the Vendor Specific ID. This fact may be used by the
Management Controller to associate an SMBus/I2C Management Endpoint with its corresponding FRU
Information Device.

If there are multiple NVM Subsystems in an SMBus ARP-capable NVMe Storage Device or NVMe
Enclosure, then the Unique NVM Storage Device ID field of the UDID shall be incremented by one for each
NVM Subsystem. If the Upstream Connector has an SMBus/I2C port, then the FRU Information Device
associated with that connector shall be present directly on the SMBus/I2C channel connected to the
Upstream Connector.

Clock stretching is allowed by the Management Controller, Management Endpoint, and the FRU Information
Device. However, implementations are strongly discouraged from using clock stretching so that
communications are more predictable with higher throughput.

When a NACK is received, a Management Endpoint shall follow the MCTP SMBus/I2C Transport Binding
Specification for a non-bridge endpoint. The Management Endpoint treats a STOP condition due to
excessive SMBus NACKs as an implicit Pause Control Primitive. Refer to section 4.2.1.1.

NVM ExpressTM Management Interface Revision 1.1b

29

Figure 16: SMBus/I2C Element UDID

Bits Field Description

127:120
Device
Capabilities

This field describes the device capabilities.

Bits Description

7:6
Address Type: This field describes the type of address contained in the
device. Refer to the MCTP SMBus/I2C Transport Binding Specification.

5:1 Reserved

0
PEC Supported: All MCTP transactions shall include a Packet Error Code
(PEC) byte. This bit shall be set to ‘1’ to indicate support for PEC.

119:112
Version and
Revision

This field is used to identify the UDID version and silicon revision.

Bits Description

7:6 Reserved

5:3 UDID Version: This field specifies the UDID version and shall be set to 001b.

2:0
Silicon Revision ID: This field is used to specify a vendor specific silicon
revision level.

111:96 Vendor ID This field contains the PCI-SIG vendor ID for the Management Endpoint.

95:80 Device ID This field contains a vendor assigned device ID for the Management Endpoint.

79:64 Interface

This field defines the SMBus version and the Interface Protocols supported.

Bits Description

15:08 Reserved

07 ZONE: This bit shall be cleared to ‘0’.

06 IPMI: This bit shall be cleared to ‘0’.

05
ASF: This bit shall be set to ‘1’. Refer to the MCTP SMBus/I2C Transport
Binding Specification.

04 OEM: This bit shall be set to ‘1'.

03:00
SMBus Version: This field shall be set to 4h for SMBus Version 2.0, or to 5h
for SMBus Version 3.0 and 3.1.

63:48
Subsystem
Vendor ID

This field contains the PCI-SIG vendor ID for the Management Endpoint.

47:32
Subsystem
Device ID

This field contains a vendor assigned device ID for the Management Endpoint.

31:00
Vendor
Specific ID

This field ensures all UDIDs from a vendor are unique and is used to associate elements
implemented within an NVMe Storage Device or NVMe Enclosure.

Bits Description

31:30

UDID Type: This field distinguishes which NVM Subsystem that implements
multiple SMBus elements is providing the UDID. Note that Management
Controllers implemented prior to NVMe-MI 1.1 may be incompatible with
devices using values 1h and 3h.

Value Description

0h FRU Information Device

1h SMBus/I2C Mux

2h Management Endpoint

3h Vendor Specific Devices

29:00
UDID Device ID: This field contains a unique vendor assigned ID for the
NVM Subsystem. The ID is different in each NVM Subsystem instance and
remains static during the life of the device.

NVM ExpressTM Management Interface Revision 1.1b

30

2.3 Error Handling

Physical layer errors are handled as specified by the corresponding physical layer specification and MCTP
transport binding specification. This specification does not require any physical layer specific error handling
requirements beyond those outlined in the MCTP transport binding specifications.

NVM ExpressTM Management Interface Revision 1.1b

31

3 Message Transport

This specification defines an interface that supports multiple message transports. The message format is
the same for the out-of-band mechanism and the in-band tunneling mechanism and is described in section
3.1. The out-of-band message transport is described in section 3.2. The in-band tunneling message
transport is described in section 3.3.

3.1 NVMe-MI Messages

NVMe-MI Messages are used in both the out-of-band mechanism and the in-band tunneling mechanism.
The format of an NVMe-MI Message is shown in Figure 17 and Figure 18.

In the out-of-band mechanism, an NVMe-MI Message consists of the payload of one or more MCTP
packets. The maximum sized NVMe-MI Message is 4,224 bytes (i.e., 4 KiB + 128 bytes). Refer to the NVMe
Management Messages over MCTP Binding Specification. NVMe-MI Messages with lengths greater than
4,224 bytes are considered invalid NVMe-MI Messages. See section 4.2 for details on how NVMe-MI
Messages are used in the out-of-band mechanism.

In the in-band tunneling mechanism, NVMe-MI Messages are not split into MCTP packets and the
maximum NVMe-MI message size is equal to the Maximum Data Transfer Size (refer to the NVM Express
specification). See section 4.3 for details on how NVMe-MI Messages are used in the in-band tunneling
mechanism.

Figure 17: NVMe-MI Message

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Message Integrity Check

Byte 0<

Message Data

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

<

< Byte N

Bytes
4 to N-1

Message
Header

Message
Body

M
E
B

3.1.1 Message Fields

The format of an NVMe-MI Message consists of a Message Header in the first dword, followed by the
Message Data. If the Integrity Check (IC) bit is set to ‘1’, then the NVMe-MI Message ends with the Message
Integrity Check as shown in Figure 17.

The Message Header contains a Message Type (MT) field and an Integrity Check (IC) bit that are defined
by the MCTP Base Specification. The Message Type field specifies the type of payload contained in the
message body and is required to be set to 4h in all NVMe-MI Messages (refer to the MCTP IDs and Codes
specification). The Integrity Check (IC) field indicates whether the NVMe-MI Message is protected by a
Message Integrity Check. All NVMe-MI Messages in the out-of-band mechanism shall be protected by a
32-bit CRC computed over the Message Body contents. The IC field shall be set to ‘1’ in all NVMe-MI
Messages in the out-of-band mechanism. The Integrity Check (IC) bit shall be cleared to ‘0’ in all NVMe-MI
Messages in the in-band tunneling mechanism.

NVM ExpressTM Management Interface Revision 1.1b

32

The Request or Response (ROR) bit in the Message Header specifies whether the NVMe-MI Message is
associated with a Request Message or a Response Message. The NVMe-MI Message Type (NMIMT) field
specifies whether the Request Message is a Control Primitive or a specific type of Command Message
(refer to Figure 23). Finally, the Command Slot Identifier (CSI) bit specifies the Command Slot with which
the NVMe-MI Message is associated in the out-of-band mechanism. Refer to section 4.2 for additional
information about Command Slots.

The Management Endpoint Buffer (MEB) bit in the Message Header specifies whether Message Data is
contained in the associated Message Data field of an NVMe-MI Message or in the Management Endpoint
Buffer. This bit should only be set in Command Messages that support Management Endpoint Buffer
operation (i.e., those listed in the Management Endpoint Buffer Supported Command List data structure).
It is an error to set this bit in any other Command Message and when this occurs it causes the Command
Message to complete with an Invalid Parameter Error Response.

Figure 18: NVMe-MI Message Fields

Byte Description

0

MCTP Data (MCTPD): This field contains the Message Type and Integrity Check fields as defined by
the MCTP Base Specification.

Bits Description

7

Integrity Check (IC): This bit is defined by the MCTP Base Specification and indicates
whether the MCTP message is covered by an overall MCTP Message Integrity Check.

All NVMe-MI Messages in the out-of-band mechanism shall be protected by a CRC and thus
this bit shall be set to ‘1’ in all out-of-band NVMe-MI Messages.

All NVMe-MI Messages in the in-band tunneling mechanism shall not be protected by a CRC
and thus this bit shall be cleared to ‘0’ in all in-band NVMe-MI Messages.

6:0
Message Type (MT): This field is defined by the MCTP Base Specification for the message
type. This field shall be set to 4h in all NVMe-MI Messages. Refer to the MCTP IDs and
Codes specification.

NVM ExpressTM Management Interface Revision 1.1b

33

Figure 18: NVMe-MI Message Fields

Byte Description

1

NVMe-MI Message Parameters (NMP): This field contains parameters applicable to the NVMe-MI
Message.

Bits Description

7
Request or Response (ROR): This bit indicates whether the message is a Request
Message or Response Message. This bit is cleared to ‘0’ for Request Messages. This bit is
set to ‘1’ for Response Messages.

6:3

NVMe-MI Message Type (NMIMT): This field specifies the NVMe-MI Message Type. Refer
to the sections referenced in the table below for details about each NVMe-MI Message Type
and whether they apply to the out-of-band mechanism, the in-band tunneling mechanism, or
both.

Value Description Reference Section

0h Control Primitive 4.2.1

1h NVMe-MI Command 5

2h NVMe Admin Command 6

3h Reserved -

4h PCIe Command 7

5h to Fh Reserved -

2:1 Reserved

0

Command Slot Identifier (CSI): This bit indicates the Command Slot with which the NVMe-
MI Message is associated. For Request Messages this bit indicates the Command Slot with
which the Request Message is associated. For Response Messages, this bit indicates the
Command Slot associated with the Request Message with which the Response Message is
associated. This bit is only applicable to NVMe-MI Messages in the out-of-band mechanism.
This bit is reserved for NVMe-MI Messages in the in-band tunneling mechanism.

Value Description

0b Command Slot 0

1b Command Slot 1

2

Bits Description

7:1 Reserved

0

Management Endpoint Buffer (MEB): This bit indicates whether the Message Data is
contained in the Message Data field of this NVMe-MI Message or in the Management
Endpoint Buffer. Refer to section 3.1.

Value Description

0b
The Message Data is contained in the Message Data of this NVMe-MI
Message.

1b The Message Data is contained in the Management Endpoint Buffer.

3 Reserved

N-1:4
Message Data (DATA): This field contains the NVMe-MI Message payload. The format of this field
depends on the NVMe-MI Message Type.

N+3:N

Message Integrity Check (MIC): If the Integrity Check (IC) bit is set to ‘1’, then this field contains a CRC
computed over the contents of the NVMe-MI Message. Refer to section 3.1.1.1.

If the IC bit is cleared to ‘0’, then this field is not included in the NVMe-MI Message.

This field is byte aligned.

NVM ExpressTM Management Interface Revision 1.1b

34

3.1.1.1 Message Integrity Check

If the Integrity Check (IC) bit is set to ‘1’, then the Message Integrity Check field contains a 32-bit CRC
computed over the contents of the NVMe-MI Message. The 32-bit CRC required by this specification is
CRC-32C (Castagnoli) which uses the generator polynomial 1EDC6F41h. The Message Integrity Check is
calculated using the following RocksoftTM Model CRC Algorithm parameters:

 Name : "CRC-32C"

 Width : 32

 Poly : 1EDC6F41h

 Init : FFFFFFFFh

 RefIn : True

 RefOut : True

 XorOut : FFFFFFFFh

 Check : E3069283h

When sending a message, the Message Integrity Check shall be calculated using the following procedure
or a procedure that produces an equivalent result:

1. Initialize the CRC register to FFFFFFFFh. This is equivalent to inverting the lowest 32 bits of the
NVMe-MI Message (Dword 0 in Figure 17);

2. Append 32 bits of 0’s to the end of the Message Data to allow room for the Message Integrity Check
(Dword N in Figure 17). This results in the Message Body shown in Figure 17 with the Message
Integrity Check field cleared to 0h;

3. Map the bits in the Message Body from step 2 to the coefficients of the message polynomial M(x).
Assume the length of M(x) is Y bytes. Bit 0 of byte 0 in the Message Body is the most significant
bit of M(x), followed by bit 1 of byte 0, on through to bit 7 of byte Y - 1. Note that the bits within each
byte are reflected (i.e., bit n of each byte is mapped to bit (7 - n) resulting in bit 7 to bit 0, bit 6 to bit
1, and so on);

Figure 19: Message Integrity Check Example

 Message Body (Length = Y bytes)

 Byte 0 Byte 1 … Byte Y - 1

M(x) = 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 … 0 1 2 3 4 5 6 7

4. Divide the polynomial M(x) by the generator polynomial 1EDC6F41h to produce the 32-bit
remainder polynomial R(x);

5. Reflect each byte of R(x) (i.e., bit n of each byte is mapped to bit (7 - n) resulting in bit 7 to bit 0, bit
6 to bit 1, and so on) to produce the polynomial R′(x);

6. Invert R′(x) to produce the polynomial R′′(x); and
7. Store R′′(x) in the Message Integrity Check field of the Message Body.

Upon receipt of an NVMe-MI Message, the Message Integrity Check may be validated as follows:

1. Save the received Message Integrity Check;
2. Initialize the CRC register to FFFFFFFFh. This is equivalent to inverting the lowest 32 bits of the

NVMe-MI Message (Dword 0 in Figure 17);
3. Clear the Message Integrity Check field to 0h;
4. Map the bits in the Message Body to the coefficients of the message polynomial M(x) as described

in step 3 in the Message Integrity Check calculation procedure above;
5. Divide the polynomial M(x) by the generator polynomial 1EDC6F41h to produce the 32-bit

remainder polynomial R(x);

NVM ExpressTM Management Interface Revision 1.1b

35

6. Reflect each byte of R(x) (i.e., bit n of each byte is mapped to bit (7 - n) resulting in bit 7 to bit 0, bit
6 to bit 1, and so on) to produce the polynomial R′(x);

7. Invert R′(x) to produce the polynomial R′′(x); and
8. Compare R′′(x) from step 7 to the Message Integrity Check value saved in step 1. If both values

are equal, the Message Integrity Check passes.

Refer to Appendix B for artificial messages and their corresponding Message Integrity Check values.

See Section 4.2.1.5 for special requirements on how to construct the Response Message when the
Management Controller issues a Replay of a Response Message with a non-zero Response Replay Offset.

3.2 Out-of-Band Message Transport

The out-of-band mechanism defined in this specification utilizes MCTP as a reliable in-order message
transport between a Management Controller and a Management Endpoint.

This section summarizes the NVMe-MI MCTP packet format. A Management Endpoint compliant to this
specification shall implement all required behaviors detailed in the Management Component Transport
Protocol (MCTP) Base Specification and corresponding transport binding specification in addition to the
requirements outlined in this specification (e.g., the Message Integrity Check algorithm).

3.2.1 MCTP Packet

In the MCTP Base Specification, the smallest unit of data transfer is the MCTP packet. One or more packets
are combined to create an MCTP message. In this specification, the MCTP messages are referred to as
NVMe-MI Messages (refer to section 1.8.21). Refer to section 3.2.1.1 for details on how MCTP packets are
assembled into NVMe-MI Messages. A packet always contains at least 1 byte of payload but the total length
shall never exceed the negotiated MCTP Transmission Unit Size. The format of an MCTP packet is shown
in Figure 20.

NVM ExpressTM Management Interface Revision 1.1b

36

Figure 20: MCTP Packet Format

Physical Medium Specific Header

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Header
VersionReserved

Destination
Endpoint ID

Source
Endpoint ID

Pkt
Seq

#

Msg
tag

T
O

E
O
M

S
O
M

Packet Payload

Physical Medium Specific Trailer

Dwords
0 to (N-1)

DWord N

>

>

>

DWords
(N+1)

to
(M-1)

DWords
M
to

(P-1)

>

Physical Medium Specific

MCTP Packet Header

MCTP Packet Payload

MCTP Packet
Header

MCTP specifications use big endian byte ordering while NVM Express specifications use little endian byte
ordering. All figures in this specification are illustrated with little endian byte ordering. Note that this pictorial
representation does not change the order that bytes are sent out on the physical layer.

The Physical Medium-Specific Header and Physical Medium-Specific Trailer are defined by the MCTP
transport binding specification utilized by the port. Refer to the MCTP transport binding specifications.

The Management Component Transport Protocol (MCTP) Base Specification defines the MCTP packet
header (refer to DSP0236 for field descriptions). The fields of an MCTP Packet are shown in Figure 21.

Figure 21: MCTP Packet Fields

Field Name Field Size

Medium-Specific Header varies

Header Version 4 bits

Reserved 4 bits

Destination Endpoint ID 8 bits

Source Endpoint ID 8 bits

Msg tag (Message Tag) 3 bits

TO 1 bit

Pkt Seq # 2 bits

EOM 1 bit

SOM 1 bit

Packet Payload varies

Medium-Specific Trailer varies

NVM ExpressTM Management Interface Revision 1.1b

37

A compliant Management Endpoint shall implement all MCTP required features defined in the MCTP Base
Specification. Optional features may be supported.

3.2.1.1 Packet Assembly into Messages

An NVMe-MI Message may be split into multiple MCTP Packet Payloads and sent as a series of packets.
An example NVMe-MI Message whose contents are split across four MCTP packets is shown in Figure 22.
Refer to the MCTP Base Specification for packetization and message assembly rules.

Figure 22: NVMe-MI Message Spanning Multiple MCTP Packets

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

1st MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

2nd MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

3rd MCTP Packet of Message

Physical Medium Specific Header

MCTP Packet Header

MCTP Packet Payload

Physical Medium Specific Trailer

4th MCTP Packet of Message

NVMe-MI MCTP Message

Message Integrity Check

Message Header

In addition to the requirements outlined in the MCTP Base Specification and transport binding
specifications, this specification has the following additional requirements:

NVM ExpressTM Management Interface Revision 1.1b

38

• With the exception of the last packet in a message, the MCTP Transmission Unit size of all packets
in a given message shall be equal to the negotiated MCTP Transmission Unit Size;

• The MCTP Transmission Unit size of the last packet in a Request Message or Response Message
(i.e., the one with the EOM bit set in the MCTP header) shall be the smallest size needed to transfer
the MCTP Packet Payload for that Packet with no additional padding beyond any padding required
by the physical medium-specific trailer; and

• Once a complete NVMe-MI Message has been assembled, the Message Integrity Check is verified.
If the Message Integrity Check passes, then the NVMe-MI Message is processed. If the Message
Integrity Check fails, then the NVMe Message is discarded. Refer to section 4.2.

3.2.2 Out-of-Band Error Handling

The Management Endpoint shall drop (silently discard) packets for error conditions as specified in the
MCTP Base Specification. Some example conditions which result in discarding packets include unexpected
middle or end packets. Silently discarded packets also cause the corresponding bit in the Get State Control
Primitive Success Response Fields to be set to ‘1’ (refer to Figure 39).

3.3 In-Band Tunneling Message Transport

The in-band tunneling mechanism in this specification utilizes the NVMe Admin Commands NVMe-MI Send
and NVMe-MI Receive as a message transport. Refer to the NVM Express specification and section 4.3 of
this specification for additional details on the NVMe-MI Send and NVMe-MI Receive commands.

NVM ExpressTM Management Interface Revision 1.1b

39

4 Message Servicing Model

NVMe-MI Messages are used for communication in both the out-of-band and in-band tunneling message
servicing models and are described in section 4.1. This specification defines multiple message servicing
models. The out-of-band message servicing model is described in section 4.2. The in-band tunneling
message servicing model is described in section 4.3.

4.1 NVMe-MI Messages

Figure 23 illustrates the taxonomy of NVMe-MI Messages. The two main categories of NVMe-MI Messages
are Request Messages and Response Messages. Request Messages are sent by a Management
Controller to a Management Endpoint when using the out-of-band mechanism. Request Messages are sent
by host software to an NVMe Controller when using the in-band tunneling mechanism. The entity sending
the Request Message is collectively referred to as the Requester and the entity receiving the Request
Message is collectively referred to as the Responder. After receiving a Request Message, the Responder
processes the Request Message. When processing is complete, the Responder sends a Response
Message back to the Requester.

A Request Message may be classified as a Command Message or a Control Primitive. Command
Messages specify an operation to be performed by the Responder and may be further classified as an
NVMe-MI Command, an NVMe Admin Command, or a PCIe Command. Control Primitives are used in the
out-of-band mechanism to affect the servicing of a previously issued Command Message or get the state
of a Command Slot and Management Endpoint (refer to section 4.2.1).

A Response Message may be classified as a Success Response or an Error Response.

Figure 23: NVMe-MI Message Taxonomy

Control
Primitive

Command Message

NVMe-MI
Command

NVMe Admin
Command

PCIe
Command

NVMe-MI Message

Response Message

Success
Response

Request Message

Error
Response

4.1.1 Request Messages

Request Messages are NVMe-MI Messages that are generated by a Requester to send to a Responder.

Request Messages specify an action to be performed by the Responder. Request Messages are either
Control Primitives (refer to section 4.2.1) or Command Messages. The format of the Message Body for a
Command Message is command set specific and is specified by the NMIMT field in the Message Header.

The NVMe Management Interface supports three command sets:

NVM ExpressTM Management Interface Revision 1.1b

40

• The Management Interface Command Set is described in section 5;

• The NVM Express Admin Command Set is described in section 6; and

• The PCIe Command Set is described in section 7.

4.1.2 Response Messages

Response Messages are NVMe-MI Messages that are generated when a Responder completes processing
of a previously issued Request Message.

The format of a Response Message is shown in Figure 24 and Figure 25. The first dword contains the
Message Header. The Status field encodes the status associated with the Response Message. This is
followed by the Response Body whose format is NVMe-MI Message Type and Response Message Status
specific. Finally, if the Integrity Check (IC) bit is set to ‘1’, then the Response Message ends with the NVMe-
MI Message Integrity Check field.

Figure 24: Response Message Format

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Message Integrity Check

Message TypeI
C

Response Body

R CSINVMe-MI
Msg Type

R
O
R

Reserved

Status

Byte 0<

<

< Byte N

Bytes
8 to N-1

Byte 4<

In the out-of-band mechanism, the CSI bit in the Message Header specifies the Command Slot of the
Request Message with which the Response Message is associated. The NVMe-MI Message Type (Msg
Type) field contains the value from the same field in the corresponding Request Message.

In the in-band tunneling mechanism, the CSI bit in the Message Header is reserved.

Figure 25: Response Message Fields

Byte Description

3:0 NVMe-MI Message Header (NMH): Refer to section 3.1.

4
Status (STATUS): This field indicates the status associated with the Response Message.
Response Message Status values are summarized in Figure 26.

N-1:5
Response Body (RESPB): This field contains response specific fields whose format is dependent
on the NVMe-MI Message Type and Status field.

N+3:N Message Integrity Check: Refer to section 3.1.

NVM ExpressTM Management Interface Revision 1.1b

41

Response Message Status values are summarized in Figure 26. A Response Message Status of Success
indicates that the corresponding Request Message completed successfully and that the Response
Message is a Success Response. The format of the Response Body for a Success Response is dependent
on the NVMe-MI Message Type and is described later in this specification.

A Response Message Status other than Success indicates that an error occurred during servicing of the
corresponding Request Message and that the Response Message is an Error Response. The format of the
Response Body is dependent on the Response Message Status as shown in Figure 26. If multiple errors
are present, a Responder may choose which error status to report.

Figure 26: Response Message Status Values

Value Description

Error
Response

Format
Section

00h Success: The command completed successfully. 4.1.2.1

01h

More Processing Required: The Command Message is in progress and requires
more time to complete processing. When this Response Message Status is used
in a Response Message, a subsequent Response Message contains the result of
the Command Message. This Response Message Status shall not be sent more
than once per Request Message.

4.1.2.1

02h
Internal Error: The Request Message could not be processed due to a vendor
specific internal error.

4.1.2.1

03h
Invalid Command Opcode: The associated command opcode field is not valid.
Invalid opcodes include reserved and optional opcodes that are not implemented.

4.1.2.1

04h

Invalid Parameter: Invalid parameter field value. Request Messages received with
reserved or unimplemented values in defined fields shall be completed with an
Invalid Parameter Error Response. Other error conditions that result in Invalid
Parameter Error Response are noted elsewhere in this specification.

4.1.2.2

05h

Invalid Command Size: The Message Body of the Command Message was larger
or smaller than that expected due to a reason other than too much or too little
Request Data (e.g., the Command Message did not contain all the required
parameters or no Request Data was expected but the Request Data is larger than
that needed to contain the required parameters).

The expected Message Body size is determined by the NVMe-MI Message Type
and opcode assuming no other errors are detected (e.g., Invalid Command Opcode
or Invalid Parameter).

4.1.2.1

06h
Invalid Command Input Data Size: The Command Message requires Request
Data and contains too much or too little Request Data.

4.1.2.1

07h
Access Denied: A Request Message was prohibited from being processed due to
a vendor specific protection mechanism.

4.1.2.1

08h to 1Fh Reserved -

20h VPD Updates Exceeded: More updates to the VPD are attempted than allowed. 4.1.2.1

21h PCIe Inaccessible: The PCIe functionality is not available at this time. 4.1.2.1

22h
Management Endpoint Buffer Cleared Due to Sanitize: An attempt was made
access data in the Management Endpoint Buffer that was zeroed due to a sanitize
operation.

4.1.2.1

23h
Enclosure Services Failure: The Enclosure Services Process has failed in an
unknown manner.

4.1.2.1

24h
Enclosure Services Transfer Failure: Communication with the Enclosure
Services Process has failed.

4.1.2.1

25h
Enclosure Failure: An unrecoverable enclosure failure has been detected by the
Enclosure Services Process.

4.1.2.1

26h
Enclosure Services Transfer Refused: The NVM Subsystem or Enclosure
Services Process indicated an error or an invalid format in communication.

4.1.2.1

27h
Unsupported Enclosure Function: An SES Send command has been attempted
to a simple Subenclosure.

4.1.2.1

NVM ExpressTM Management Interface Revision 1.1b

42

Figure 26: Response Message Status Values

Value Description

Error
Response

Format
Section

28h
Enclosure Services Unavailable: The NVM Subsystem or Enclosure Services
Process has encountered an error but may become available again.

4.1.2.1

29h
Enclosure Degraded: A noncritical failure has been detected by the Enclosure
Services Process.

4.1.2.1

2Ah
Sanitize In Progress: The requested command is prohibited while a sanitize
operation is in progress. Refer to section 9.1.

4.1.2.1

2Bh to DFh Reserved -

E0h to FFh Vendor Specific
Vendor
Specific

4.1.2.1 Generic Error Response

A Generic Error Response is generated for errors in which no additional information is provided beyond the
Response Message Status. Bytes 7:5 are reserved. The format of a Generic Error Response is shown in
Figure 27.

Figure 27: Generic Error Response

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

StatusReserved

Byte 0<

Byte 4<

Byte 8<

4.1.2.2 Invalid Parameter Error Response

An Invalid Parameter Error Response is generated for Error Responses where the Status field is set to
Invalid Parameter. The format of an Invalid Parameter Error Response is shown in Figure 28 and the
response specific fields are summarized in Figure 29.

Figure 28: Invalid Parameter Error Response

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

StatusParameter Error Location (PEL)

Byte 0<

Byte 4<

Byte 8<

NVM ExpressTM Management Interface Revision 1.1b

43

Figure 29: Invalid Parameter Error Response Fields

Byte Description

7:5

Parameter Error Location (PEL): This field indicates the byte and bit of the request parameter within
the Request Message that contains the first invalid parameter (i.e., the invalid parameter with the lowest
byte and bit).

If the invalid parameter spans multiple bytes or bits, then the location indicates the first byte and bit of
the parameter.

Bits Description

23:08
Byte in the Request Message of the parameter that contained the error. If the
error is beyond byte 65,535, then the value 65,535 is reported in this field.

07:03 Reserved

02:00
Bit in the Request Message of the parameter that contained the error. Valid
values are 0 to 7.

4.2 Out-of-Band Message Servicing Model

The out-of-band mechanism in this specification utilizes a request and response servicing model. A
Management Controller sends a Request Message to a Management Endpoint, the Management Endpoint
processes the Request Message, and when processing has completed, sends a Response Message back
the Management Controller. Under no circumstances does a Management Endpoint generate an
unsolicited Response Message (i.e., a Response Message that does not correspond to a previously
received Request Message).

Unlike other NVMe-MI Messages that may span multiple MCTP packets, NVMe-MI Messages containing a
Control Primitive shall consist of exactly one MCTP packet.

This specification utilizes Command Slots for Command Message servicing. A Management Controller
should not send a new Command Message to a Command Slot until the Response Message for the
previously issued Command Message to that Command Slot has been received. Each Management
Endpoint contains two Command Slots that each include state information and a Pause flag (refer to section
4.2.1.4).

A Management Controller sends a Command Message to a Management Endpoint that targets a specific
Command Slot in the Management Endpoint. The Management Endpoint assembles MCTP packets into
Command Messages targeting a Command Slot. The Command Slot remains allocated to the Command
Message until servicing of the Command Message has completed and command servicing transitions back
to the Idle state.

A Command Message is the only type of multi-packet NVMe-MI Message that may be received by a
Management Endpoint. The maximum number of Command Messages in flight to a Management Endpoint
is equal to the number of Command Slots. The operation of each Command Slot is independent, allowing
a Management Controller to have two independent streams of Command Messages to a Management
Endpoint. The Command Message associated with each Command Slot is serviced in parallel. If the NVM
Subsystem implements multiple Management Endpoints, then command servicing of each Management
Endpoint occurs in parallel. An NVM Subsystem that implements N Management Endpoints may have up
to 2N Command Messages serviced in parallel.

The Command Servicing State Diagram in Figure 30 is used to describe functional requirements and does
not mandate an implementation.

NVM ExpressTM Management Interface Revision 1.1b

44

Figure 30: Command Servicing State Diagram

Idle

ReceiveTransmit

Process

Start of
Command Message

Complete
Command Message

Received

Abort or
Error

Response
Required

or
Resume

Response Message
Transmitted

or
Abort

Abort

More
Processing
Required

Sent

1. Idle: This is the default state of the command servicing state machine (e.g., following a reset).
Command servicing transitions from Idle to the Receive state when the first MCTP packet of a
Command Message is received (i.e., an MCTP packet with the SOM bit in the MCTP packet header
set to ‘1’ and the Message Type set to 4h).

2. Receive: The state when the first packet of a Command Message has been received and the
message is being assembled and/or validated. Command servicing transitions from Receive to the
Idle state when an Abort Control Primitive is received, an error is detected in message assembly
(refer to section 3.2.1.1), or the Message Integrity Check fails (refer to section 3.1.1.1). Command
servicing transitions from Receive state to the Process state when a Command Message is
assembled and the message integrity check is successful.

3. Process: The state when a Command Message is processed. Processing of a Command Message
consists of checking for errors with the Command Message and performing the actions specified
by the Command Message or aborting the Command Message. Command servicing transitions
from Process to the Transmit state when a Response Message is required to be sent (i.e., the
Pause Flag is cleared to ‘0’ and either of the following are true: all processing of the Command
Message has completed or command processing is expected to exceed the corresponding
transport binding specification response timeout). Command servicing transitions from the Process
state to the Idle state due to an Abort Control Primitive (refer to section 4.2.1.3).

4. Transmit: The state in which a Response Message for the Command Message is transmitted to
the Management Controller. Command servicing transitions from the Transmit to the Idle state once
the entire NVMe-MI Message associated with the response to the Command Message has been
transmitted on the physical medium or due to an Abort Control Primitive (refer to section 4.2.1.3).
If command servicing did not complete in the Process state, then the Management Endpoint
transmits a Response Message with status More Processing Required and the command servicing
transitions back to the Process state.

NVM ExpressTM Management Interface Revision 1.1b

45

The behavior of receiving two or more overlapping Command Messages to the same Command Slot is
undefined. If this results in the Management Endpoint discarding a Command Message, then this is
considered receiving a Command Message to a non-Idle Command Slot (CMNICS). Refer to section
4.2.1.4.

4.2.1 Control Primitives

Control Primitives are Request Messages sent from a Management Controller to a Management Endpoint
to affect the servicing of a previously issued Command Message or get the state of a Command Slot and
Management Endpoint. Control Primitives are applicable only in the out-of-band mechanism and are
prohibited in the in-band tunneling mechanism.

Control Primitives may target a Command Slot. Unlike Command Messages, Control Primitives may be
sent while the Command Slot is in any command servicing state and are processed immediately by the
Management Endpoint. Unless otherwise indicated, Control Primitives do not change the command
servicing state of the Command Slot.

The format of a Control Primitive is shown in Figure 31 and the fields are described in Figure 32.

Figure 31: Control Primitive Request Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Control Primitive Opcode
(CPO)Control Primitive Specific Parameter (CPSP)

Byte 0<

Byte 4<

Byte 8<

Tag (TAG)

Figure 32: Control Primitive Fields

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to section 3.1.

04
Control Primitive Opcode (CPO): This field specifies the opcode of the Control Primitive to be
processed. Refer to Figure 33.

05
Tag (TAG): This field contains an opaque value that is sent from the Management Controller in the
Control Primitive and returned by the Management Endpoint in to the associated Response Message. A
Management Controller may use any value in this field.

07:06
Control Primitive Specific Parameter (CPSP): This field is used to pass Control Primitive specific
parameter information.

11:08 Message Integrity Check (MIC): Refer to section 3.1.

Figure 33: Control Primitive Opcodes

Opcode O/M
1
 Command

00h M Pause

01h M Resume

02h M Abort

03h M Get State

04h M Replay

NVM ExpressTM Management Interface Revision 1.1b

46

Figure 33: Control Primitive Opcodes

Opcode O/M
1
 Command

05h to EFh Reserved

F0h to FFh O Vendor Specific

NOTES:
1. O/M: O = Optional, M = Mandatory.

The format of a Success Response associated with a Control Primitive is shown in Figure 34 and the fields
are described in Figure 35.

Figure 34: Control Primitive Success Response Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

StatusControl Primitive Specific Response (CPSR) Tag (TAG)

Byte 0<

Byte 4<

Byte 8<

Figure 35: Control Primitive Success Response Fields

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to section 3.1.

04 Status (STATUS): Refer to section 4.1.2.

05
Tag (TAG): This field contains an opaque value that is passed by the Management Endpoint from the
Control Primitive to the associated Response Message. The Response Message contains the same
value in this field as the corresponding Request Message.

07:06
Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific
status.

11:08 Message Integrity Check (MIC): Refer to section 3.1.

A Management Endpoint transmits a Response Message to the Management Controller when the actions
associated with that Control Primitive have completed.

Unlike Command Messages, a Management Controller may issue a Control Primitive to a Command Slot
without waiting for a response for previously issued Control Primitives to that Command Slot. If multiple
Control Primitives are sent without waiting for responses from the Management Endpoint, only the actions
and response associated with the last Control Primitive are guaranteed (i.e., the actions associated with
previously issued but unacknowledged Control Primitives may or may not be performed and the Response
Messages for previously issued but unacknowledged Control Primitives may or may not be transmitted).
Receipt of a Control Primitive never corrupts a previous Control Primitive associated with the Command
Slot. The Response Message is either entirely transmitted or discarded.

NVM ExpressTM Management Interface Revision 1.1b

47

The TAG field is an opaque value copied from the Control Primitive Request Message into the Response
Message. By using unique TAG values, it is possible for the Management Controller to link Response
Messages with Request Messages.

4.2.1.1 Pause

The Pause Control Primitive is used to suspend response transmission and suspend the timeout waiting
for packet for both Command Slots in a Management Endpoint. The CSI bit in a Pause Control Primitive is
not used and shall be cleared to 0h. If the CSI bit is set to ‘1’, then the Management Endpoint should
transmit an Invalid Parameter Error Response.

Associated with each Command Slot is a Pause Flag that determines whether the slot is ‘paused.’ The
Pause Flag status is included with a Success Response and may also be read using the Get State primitive.

The CPSP field for the Pause primitive is reserved.

The format of the CPSR field in the Control Primitive Success Response is shown in Figure 36.

Figure 36: Pause Control Primitive Success Response Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive
specific status.

Bits Description

15:02 Reserved

01

Pause Flag Status Slot 1 (PFSS1): This bit indicates whether or not Command
Slot 1 is paused after completing the Pause primitive. This bit set to ‘1’ indicates
the Command Slot is paused. This bit cleared to ‘0’ indicates the Command Slot
is not paused.

00

Pause Flag Status Slot 0 (PFSS0): This bit indicates whether or not Command
Slot 0 is paused after completing the Pause primitive. This bit set to ‘1’ indicates
the Command Slot is paused. This bit cleared to ‘0’ indicates the Command Slot
is not paused.

The result of a Pause Control Primitive on a Command Slot is dependent on the command servicing state
of the Command Slot when the Pause Control Primitive is received, as described below:

Idle: The Pause primitive has no effect, and the Pause Flag is not changed (i.e., remains cleared to ‘0’).
Refer to section 4.2.1.4.

Receive: The Pause primitive sets the Pause Flag to ‘1’ (refer to section 4.2.1.4) and alerts the
Management Endpoint that remaining MCTP packets associated with the command may be delayed.
Further packets sent to this Command Slot while the Pause Flag is set are received normally.

Process: The Pause primitive sets the Pause Flag to ‘1’ (refer to section 4.2.1.4) causing the Command
Slot to remain in the Process state until a Resume Control Primitive is received. Pause has no effect on the
command processing in the Command Slot. Though command processing may complete, the Command
Slot shall not transition to the Transmit state.

Transmit: The Pause Control Primitive sets the Pause Flag to ‘1’ (refer to section 4.2.1.4) suspending
transmission of Response Messages on a packet boundary. The Management Endpoint should pause
transmission as soon as possible after receiving a Pause Control Primitive.

The Management Endpoint shall transmit a Response Message with success status after receiving the
Pause primitive. It is not an error to issue a Pause Control Primitive when a Command Slot is already
paused.

NVM ExpressTM Management Interface Revision 1.1b

48

While the Pause Flag is set to ‘1’, the Management Endpoint disables the timeout waiting for packet timer
and does not transmit responses to commands. The timeout waiting for a packet is the lesser of 100 ms or
the time defined in the appropriate MCTP transport binding specification. The Management Controller
should not send Command Messages to a Command Slot that is paused.

4.2.1.2 Resume

The Resume Control Primitive is used to resume from a paused condition. This is the complement to the
Pause Control Primitive.

Like the Pause Control Primitive, the Resume Control Primitive affects both slots and the CSI bit in a
Resume Control Primitive shall be cleared to ‘0’. If a Command Slot was not paused before receiving the
Resume primitive, the Resume primitive completes successfully and has no effect.

The CPSP field for the Resume primitive is reserved. The CPSR field in the Control Primitive Success
Response is reserved.

The result of a Resume Control Primitive is based on the state of a Command Slot when the Resume
Control Primitive is received, as described below:

Idle: The Resume primitive has no effect.

Receive: The Resume primitive alerts the Management Endpoint that transmission of any remaining MCTP
packets associated with the command is resuming. The Pause Flag is cleared to ‘0’ (refer to section
4.2.1.4).

Process: The Resume primitive allows a previously paused Command Slot to transition to the Transmit
state once processing is complete and starts transmitting a response after responding to the Resume
primitive. The Pause Flag is cleared to ‘0’ (refer to section 4.2.1.4).

Transmit: The Management Endpoint resumes transmission of the response corresponding to the
command associated with that slot after responding to the Resume primitive. The Pause Flag is cleared to
‘0’ (refer to section 4.2.1.4).

The Management Endpoint shall transmit a Control Primitive Response Message with success status after
receiving the Resume primitive.

4.2.1.3 Abort

The Abort Control Primitive is used to re-initialize a Command Slot to the Idle state, clear the Pause Flag
associated with that Command Slot to ‘0’, and attempt to abort command servicing associated with that
Command Slot.

Aborting a Command Message shall have no effect on the other Command Slot of the Management
Endpoint, other Management Endpoints, or NVMe Controllers in the NVM Subsystem. Subsequent
command servicing in the Command Slot is not affected by the Abort.

A Management Controller may issue an Abort primitive to clean-up resources associated with a Command
Slot in an unknown state.

The CPSP field for the Abort primitive is reserved. The format of the CPSR field in the Control Primitive
Success Response is shown in Figure 37.

NVM ExpressTM Management Interface Revision 1.1b

49

Figure 37: Abort Control Primitive Success Response Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific
status.

Bits Description

15:02 Reserved

01:00

Command Processing Abort Status (CPAS): This field indicates the effect of the Abort
primitive on the processing of the Command Message associated with the Command Slot.

0h – Command aborted after processing completed or no command to abort.
1h – Command aborted before processing began.
2h – Command processing partially completed.
3h – Reserved

The result of an Abort primitive is based on the command servicing state of the specified Command Slot
when the Abort primitive is received, as described below:

Idle: The Abort primitive has no effect. The Management Endpoint shall transmit a Response Message
with success status and the CPAS field cleared to 0h.

Receive: The Management Endpoint discards the contents of the Command Slot and transitions to the Idle
state. The Management Endpoint shall transmit a Response Message with success status and the CPAS
field set to 1h.

Process: The Abort primitive causes processing of the command in the Command Slot to be aborted:

a) If the Abort primitive was received before command processing started, the Management Endpoint
discards the contents of the Command Slot and transitions to the Idle state. The Management
Endpoint shall transmit a Success Response and the CPAS field set to 1h; or

b) If the Abort primitive was received while the command is being processed, the Management
Endpoint discards the contents of the Command Slot and transitions to the Idle state. The
Management Endpoint attempts to abort the command:

• If the command is aborted and had no effect on the NVM Subsystem, then the Management
Endpoint shall transmit a Success Response and the CPAS field set to 1h;

• If the Management Endpoint is not able to abort the command, then the Management
Endpoint shall transmit a Success Response and set the CPAS field to 2h; or

• If the command has completed processing (e.g., the Management Endpoint is paused),
then the Management Endpoint shall transmit a Success Response and the CPAS field is
cleared to 0h.

Transmit: The Management Endpoint discards the contents of the Command Slot and transitions to the
Idle state. The Management Endpoint transmits a Response Message with success status and the CPAS
field cleared to 0h.

It is not an error to issue an Abort Control Primitive to a slot that is paused. The state of slot is reinitialized
clearing the Pause Flag to ‘0’.

4.2.1.4 Get State

The Get State Control Primitive is used to get the state of a Command Slot and Management Endpoint.

The format of the CPSP field in the Control Primitive Request Message is shown in Figure 38.

NVM ExpressTM Management Interface Revision 1.1b

50

Figure 38: Get State Control Primitive Request Message Fields

Byte Description

07:06

Control Primitive Specific Parameter (CPSP): This field is used to pass Control Primitive specific
parameter information.

Bits Description

15:01 Reserved

00
Clear Error State Flags (CESF): This bit specifies whether or not to
clear the error state flags when completing this command.

The Management Endpoint shall transmit a Response Message with success status after receiving the Get
State primitive. The format of the CPSR field in the Control Primitive Success Response is shown in Figure
39.

Figure 39: Get State Control Primitive Success Response Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific status.

Bits
CS

Specific
1

Description

15 Yes

Pause Flag (PFLG): This bit indicates whether or not the Command Slot is paused.
This bit set to ‘1’ indicates the Command Slot is paused. This bit cleared to ‘0’
indicates the Command Slot is not paused.

While the Pause Flag is set, the Management Endpoint disables the timeout waiting
for packet timer, as defined in the MCTP Base Specification, for the Command Slot
and does not transmit responses to Command Messages.

14 No

NVM Subsystem Reset Occurred (NSSRO): This bit indicates when an NVM
Subsystem Reset occurs while main power is applied. This bit is set to ‘1’ if the last
occurrence of an NVM Subsystem Reset occurred while main power was applied to
the NVM Subsystem. This bit is cleared to ‘0’ following a power cycle and following a
Get State primitive with the CESF bit set to ‘1’.

13 No
Bad Packet or Other Physical Layer (BPOPL): This bit is set to ‘1’ if a packet sent
to the Management Endpoint failed a transport specific packet integrity check since
the last time Get State primitive was processed with the CESF bit set to ‘1’.

12 No

Bad, Unexpected, or Expired Message Tag (BUEMT): This bit is set to ‘1’ if the
Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was processed with the CESF
bit set to ‘1’.

11 No

Out-of-Sequence Packet Sequence Number (OSPSN): This bit is set to ‘1’ if the
Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was processed with the CESF
bit set to ‘1’.

10 No

Unexpected Middle or End of Packet (UMEP): This bit is set to ‘1’ if the
Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was processed with the CESF
bit set to ‘1’.

09 No
Incorrect Transmission Unit (ITU): This bit is set to ‘1’ if the Management Endpoint
detected an error of this type (refer to the MCTP Base Specification) since the last
time Get State primitive was processed with the CESF bit set to ‘1’.

08 No
Unknown Destination ID (UDSTID): This bit is set to ‘1’ if the Management Endpoint
detected an error of this type (refer to the MCTP Base Specification) since the last
time Get State primitive was processed with the CESF bit set to ‘1’.

NVM ExpressTM Management Interface Revision 1.1b

51

Figure 39: Get State Control Primitive Success Response Fields

Byte Description

07 No
Bad Header Version (BHVS): This bit is set to ‘1’ if the Management Endpoint
detected an error of this type (refer to the MCTP Base Specification) since the last
time Get State primitive was processed with the CESF bit set to ‘1’.

06 No
Unsupported Transmission Unit (UTUNT): This bit is set to ‘1’ if the Management
Endpoint detected an error of this type (refer to the MCTP Base Specification) since
the last time Get State primitive was processed with the CESF bit set to ‘1’.

05 No
Timeout Waiting for a Packet (WPTT): This bit is set to ‘1’ if the Management
Endpoint detected an error of this type (refer to the MCTP Base Specification) since
the last time Get State primitive was processed with the CESF bit set to ‘1’.

04 No

Bad Message Integrity Check Error (BMICE): This bit is set to ‘1’ if the
Management Endpoint detected an error of this type (refer to the MCTP Base
Specification) since the last time Get State primitive was processed with the CESF
bit set to ‘1’.

03 No

Command Message to non-Idle Command Slot (CMNICS): This bit is set to ‘1’ if
the Management Endpoint discarded one or more Command Messages due to
overlapping Command Messages to a Command Slot since the last time Get State
primitive was processed with the CESF bit set to ‘1’.

02 Reserved

01:00 Yes

Slot Command Servicing State (SSTA): This field indicates the current command
servicing state of the Command Slot. An implementation may choose to indicate only
the Idle and Process states in this field. Refer to Figure 30.

Value Description

0h Idle

1h Receive

2h Process

3h Transmit

NOTES:
1. Command Slot Specific. A ‘Yes’ in this column indicates the value of the field is independent per

Command Slot within a Management Endpoint.

4.2.1.5 Replay

The Replay Control Primitive is used to retransmit the Response Message for the last Command Message
processed in a Command Slot. The replayed Response Message forms a new MCTP Response Message
with Message Data starting from Response Replay Offset of the original Response Message and continuing
to the end of the Response Message, including the original MIC. The first packet shall have SOM set to ’1’
and shall include the Message Header of the original Response Message even if the Response Replay
Offset is not zero.

Note that the Management Controller will need extensions to the MCTP Base Specification in its MCTP
layer in order to Replay a Response Message using a non-zero Response Replay Offset. No extensions to
the MCTP Base Specification are needed to Replay with Response Replay Offset equal to zero. For the
case where a Management Controller chooses to use a non-zero Response Replay Offset, the MCTP Base
Specification requires terminating message assembly for certain errors (i.e., receiving a packet with bad
packet data integrity).

If a Management Controller receives a number of packets with no errors in a Response Message and then
gets an error on a packet that causes termination of message assembly, the Management Controller will
need extensions in its MCTP layer to forward the packets it received with no errors to its NVMe-MI layer
prior to terminating message assembly. The Management Controller can then issue a Replay to get the
second part of the Response Message using a non-zero Response Replay Offset. The Management
Controller’s NVMe-MI layer can then assemble the two partial Response Messages to create the whole

NVM ExpressTM Management Interface Revision 1.1b

52

Response Message. The MIC can then be validated across the whole Response Message as described in
Section 3.1.1.1.

The format of the CPSP field in the Control Primitive Request Message is shown in Figure 40.

Figure 40: Replay Control Primitive Request Fields

Byte Description

07:06

Control Primitive Specific Parameter (CPSP): This field is used to pass Control Primitive specific
parameter information.

Bits Description

15:08 Reserved

07:00

Response Replay Offset (RRO): This field specifies the starting packet number from
which the Response Message associated with the last Command Message processed
in the Command Slot shall be replayed.

This is a 0’s based value. When this field is cleared to 0h, the first packet of the
associated Response Message is the first packet replayed.

If this field specifies an offset that is beyond the length of the Response Message, then
processing of the Control Primitive is aborted and the Management Endpoint transmits
an Invalid Parameter Error Response.

The format of the CPSR field in the Control Primitive Success Response is shown in Figure 41.

Figure 41: Replay Control Primitive Success Response Fields

Byte Description

07:06

Control Primitive Specific Response (CPSR): This field is used to return Control Primitive specific
status.

Bit Description

15:01 Reserved

00

Response Replay (RR): This bit indicates if a previous Response Message is
retransmitted. This bit is set to ‘1’ if the requested Response Message is retransmitted by
the Management Endpoint. This bit is cleared to ‘0’ if the requested Response Message
is not retransmitted.

The result of a Replay primitive is based on the command servicing state of the specified Command Slot
when the Replay primitive is received, as described below:

Idle: The Replay primitive requests retransmission of the completion at the offset specified by the RRO
field if such a completion is available:

a) If the Replay primitive was received following an Abort primitive or a reset (refer to section 9.3)
before any Command Messages are processed, then there is no Response Message available to
retransmit. The Management Endpoint shall transmit a Response Message with success status
with the RR bit cleared to ‘0’; or

b) If the Replay primitive was received following the processing of one or more Command Messages,
then the Management Endpoint shall transmit a Response Message with success status with the
RR bit set to ‘1’. The Management Endpoint transmits the MCTP packets associated with the
requested Response Message after the Control Primitive Success Response.

NVM ExpressTM Management Interface Revision 1.1b

53

Receive: The Management Endpoint transmits a Response Message with success status with the RR bit
cleared to ‘0’.

Process: The Replay primitive requests retransmission of the last response transmitted for the command
in this Command Slot:

a) If a Response Message has not been transmitted for the Command Message (i.e., the slot never
entered the Transmit state for the Command Message), then the Management Endpoint transmits
a Response Message with success status and the RR bit cleared to ‘0’; or

b) If a Response Message has been transmitted for the Command Message (i.e., a Response
Message was transmitted indicating that more processing was required), then the Management
Endpoint transmits a Response Message with success status with the RR bit set to ‘1’. The
Management Endpoint retransmits the response indicating that more processing is required.

Transmit: The Management Endpoint stops transmitting response packets for the Command Slot and then
transmits a Response Message with success status with the RR bit set to ‘1’. The Management Endpoint
transmits a Response Message containing the packets starting at the packet offset specified in the
Response Replay Offset field of the Replay after the Control Primitive Success Response. The Command
Slot remains in the Transmit state until retransmission is complete.

It is not an error to issue a Replay primitive to a Command Slot that is paused. The response is retransmitted
even if the Command Slot is paused (i.e., there is an implicit Resume primitive affecting both Command
Slots when processing the Replay primitive) at any time during the response, including before the first
packet was transmitted. After successful completion of the Replay primitive, neither Command Slot is
paused.

4.2.2 Out-of-Band Error Handling

This section describes error handling specific to the NVMe-MI out-of-band message processing model.

4.2.2.1 Command Timeouts

MCTP defines a maximum response time for MCTP control messages (refer to the appropriate MCTP
transport binding specification).

If a Management Endpoint determines that command processing may not complete within the lesser of
100 ms or the request-to-response time specified in the appropriate MCTP transport binding specification,
the Management Endpoint shall utilize the More Processing Required response mechanism. The Response
Message from the Management Endpoint is allowed to be delayed beyond this timeout while the transport
is busy or unavailable.

A Management Endpoint should only use the More Processing Required response for commands that are
expected to take longer than the required time (e.g., Format NVM). Implementations are strongly
discouraged from using this response while processing Commands Messages that take less than or the
required time.

4.2.2.2 Control Primitive Timeouts

A Management Endpoint shall attempt to respond to a Control Primitive within the lesser of 100 ms or the
request-to-response time specified in the appropriate MCTP transport binding specification. The Response
Message from the Management Endpoint is allowed to be delayed beyond this timeout while the transport
is busy or unavailable.

NVM ExpressTM Management Interface Revision 1.1b

54

4.2.3 Management Endpoint Buffer

Since the maximum size of the NVMe-MI Message is 4,224 bytes, the maximum possible amount of out-
of-band Request Data that may be contained in a Request Message is 4,216 bytes (i.e., 4,224 bytes minus
4-byte Message Header and 4-byte Message Integrity Check field) and the maximum possible amount of
out-of-band Response Data that may be contained in a Response Message is 4,215 bytes (i.e., 4,224 bytes
minus 4-byte Message Header, 1-byte Status field, and 4-byte Message Integrity Check field). The amount
of supported Request or Response Data is Command Message specific due to the presence of additional
command specific fields. In some cases, it is desirable to service Command Messages that contain more
Request Data or Response Data than allowed to be transferred in an NVMe-MI Message. For example,
one may wish to issue an NVM Express Admin Command Set Get Log Page command to transfer a log
page that is greater in size than that allowed in the Response Data.

A Management Endpoint may support an optional Management Endpoint Buffer that facilitates Request
Data and Response Data transfers that exceed that maximum size allowed by an NVMe-MI Message. A
Management Endpoint Buffer is exclusive to one Management Endpoint and shall not be shared. Support
for the Management Endpoint Buffer and its size in bytes is indicated by the Management Endpoint Buffer
Size field in the Port Information Data Structure of the port with which the Management Endpoint is
associated. Management Endpoints are not required to all have the same Management Endpoint Buffer
support. For example, a subset of Management Endpoints may support a Management Endpoint Buffer
and the size of each of these Management Endpoint Buffers may be different.

If a Management Endpoint supports a Management Endpoint Buffer, then all Command Messages or a
subset of Command Messages supported by the Management Endpoint may support use of the
Management Endpoint Buffer. A list of commands that support the use of the Management Endpoint Buffer
is contained in the Management Endpoint Buffer Command Support List data structure that is retrieved
using the Read NVMe-MI Data Structure command. If a Management Endpoint supports a Management
Endpoint Buffer, then the Management Endpoint shall support the Management Endpoint Buffer Read and
Management Endpoint Buffer Write commands.

The contents of a Management Endpoint Buffer may be read or written by a Management Controller by
issuing Management Endpoint Buffer Read and Management Endpoint Buffer Write commands. The
Management Endpoint Buffer is permitted to be read or written in an arbitrary manner. For example, the
contents of the Management Endpoint Buffer may be written sequentially using a sequence of Management
Endpoint Buffer Write commands or the partial contents of the Management Endpoint Buffer may be written
in any order with gaps using these commands. Furthermore, Management Endpoint Buffer Read and Write
commands may be interleaved allowing a portion of the Management Endpoint Buffer to be read while
another portion of the Management Endpoint Buffer is written.

If the Management Endpoint Buffer (MEB) bit is set to ‘1’ in a Command Message that normally contains
Request Data, then no Request Data is transferred in the Command Message itself and the required
Request Data is instead transferred from the Management Endpoint Buffer. The Request Data starts at a
zero offset from the start of the Management Endpoint Buffer. If the MEB bit is set to ‘1’ in a Command
Message that normally contains Request Data, then the Command Message shall contain no Request
Data. If the Command Message contains Request Data or is one that does not support Request Data, then
the Management Endpoint responds with an Invalid Parameter Error Response. The parameter with the
error in this case is the Request Data field.

If the Management Endpoint Buffer (MEB) bit is set to ‘1’ in a Command Message that normally results in
Response Data, then no Response Data is transferred in the corresponding Response Message itself and
the Response Data is instead transferred to the Management Endpoint Buffer. The Response Data starts
at a zero offset from the start of the Management Endpoint Buffer.

The contents of the Management Endpoint Buffer are set to 0h when the corresponding Management
Endpoint is reset. The contents of the Management Endpoint Buffer are modified by the Management
Endpoint Buffer Write command and by Command Messages that generate Response Data with the MEB

NVM ExpressTM Management Interface Revision 1.1b

55

bit set to ‘1’. When the Management Endpoint Buffer is updated with Response Data, the contents of the
Management Endpoint Buffer that are not updated are set to zero (i.e., the Message Data from previous
Command Messages is not preserved). The same contents of the Management Endpoint Buffer may be
used as Request Data for multiple Command Messages. Similarly, the Management Endpoint Buffer allows
the use of Response Data generated by one Command Message to be used as the Request Data for a
subsequent Command Message.

Since it is possible to have two out-of-band Command Messages, one associated with each of the two
Command Slots, being simultaneously serviced that use the Management Endpoint Buffer, the
Management Controller must comprehend and manage any possible race conditions. Updates to the
Management Endpoint Buffer are not guaranteed to be atomic. Therefore, when a race condition involving
two operations that update the Management Endpoint Buffer occurs, the final contents of the Management
Endpoint Buffer may be an arbitrary mixture of the updates.

The Management Endpoint Buffer is considered a cache in the context of sanitize operations performed in
an NVM Subsystem. The MCTP Management Endpoint Buffer may contain Response Data associated with
a previously processed command that is not allowed during a sanitize operation. When a sanitize operation
is initiated, the contents of the Management Endpoint Buffer shall be cleared to 0h. An attempt to access
this zeroed data by a Management Endpoint Buffer Read command or any Command Message that uses
the Management Endpoint Buffer, then the Management Endpoint responds with a Response Message
Status of Management Endpoint Buffer Cleared Due to Sanitize. This Response Message Status is
commonly associated with a Management Endpoint Buffer Read command but may be associated with any
command that uses the Management Endpoint Buffer as Request Data.

4.3 In-Band Tunneling Message Servicing Model

The in-band tunneling mechanism in this specification utilizes two NVMe Admin Commands (NVMe-MI
Send and NVMe-MI Receive). The NVMe-MI Send command is used to tunnel an NVMe-MI Command
from host software to an NVMe Controller that transfers data from the host to the NVMe Controller (similar
to a write operation) or to instruct the Management Endpoint to perform an action (e.g., to reset the NVM
Subsystem using the Reset command). The NVMe-MI Receive command is used to tunnel an NVMe-MI
Command from a host to an NVMe Controller that transfers data from the NVMe Controller to the host
(similar to a read operation). Figure 57 specifies whether an NVMe-MI Command is tunneled via the NVMe-
MI Send command or the NVMe-MI Receive command.

Refer to the NVM Express specification for additional details on the NVMe-MI Send and NVMe-MI Receive
commands. Additional details on NVMe-MI Send are in section 4.3.1 and additional details on NVMe-MI
Receive are in section 4.3.2.

4.3.1 NVMe-MI Send Command

The NVMe-MI Send command is an NVMe Admin Command as defined by this specification and the NVM
Express specification. It is used to tunnel an NVMe-MI Command in-band from host software to an NVMe
Controller that transfers data from a host to an NVMe Controller (similar to a write operation) or to instruct
the Management Endpoint to perform an action (e.g., to reset the NVM Subsystem using the Reset
command). The data being transferred or action to be performed is in one or more of the following locations:
Request Data, NVMe Management Dword 0, NVMe Management Dword 1. Figure 57 specifies which
NVMe-MI Commands are tunneled via the NVMe-MI Send command.

NVMe-MI Commands may apply to the NVM Subsystem, Controllers, and/or Namespaces. If the tunneled
NVMe-MI Command applies to one or more Controllers, then the applicable Controller(s) are specified by
fields in the tunneled NVMe-MI Command. Note that unlike some other Admin Commands, the Controller
to which the NVMe-MI Send command is issued is not used to determine which Controller the tunneled
NVMe-MI Command applies to. If the tunneled NVMe-MI Command applies to one or more Namespaces,
then the applicable Namespace(s) are specified by fields in the tunneled NVMe-MI Command. Note that

NVM ExpressTM Management Interface Revision 1.1b

56

the Namespace Identifier (NSID) field of the NVMe-MI Send command (bytes 7:4 of the Submission Queue
Entry) is not used and should be cleared to 0h by host software.

The mapping of how an NVMe-MI Command is tunneled inside of NVMe-MI Send commands is described
in section 4.3.1.1. The NVMe-MI Send command servicing model is described in section 4.3.1.2.

4.3.1.1 NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping

In order to tunnel an NVMe-MI Command in-band via NVMe-MI Send, an NVMe-MI Request Message is
mapped onto an NVMe Submission Queue Entry (SQE) as shown pictorially in Figure 42 and in table form
in Figure 43. An NVMe-MI Response Message is mapped on to an NVMe Completion Queue Entry (CQE)
as shown pictorially in Figure 44 and in table form in Figure 45. Refer to the NVM Express specification for
details on an NVMe Submission Queue Entry and an NVMe Completion Queue Entry.

Figure 42: NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping
Diagram

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

< Byte 0Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode < Byte 4

< Byte 8NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

< Byte 12

Bytes
16 to N - 1

< Byte N

Reserved

Command Dword 0
(CDW0)

Namespace Identifier
(NSID)

Reserved

Metadata Pointer (MPTR)

Data Pointer (DPTR)

Command Dword 10
(CDW10)

Command Dword 11
(CDW11)

Command Dword 12
(CDW12)

Command Dword 13
(CDW13)

Command Dword 14
(CDW14)

Command Dword 15
(CDW15)

Data Buffer

<

NVMe Command Format – Admin Command Set

Management Interface Command Request Message Format

03:00

07:04

15:08

23:16

39:24

43:40

47:44

51:48

55:52

59:56

63:60

DescriptionOffset

31 0

Figure 43: NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping
Table

NVMe-MI Command Request Message NVMe Admin Command SQE Mapping

Byte Description Byte Description

Not
applicable

(n/a)

This field has no equivalent in this
specification.

03:00
Command Dword 0 (CDW0): Refer to the NVM
Express specification.

NVM ExpressTM Management Interface Revision 1.1b

57

Figure 43: NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping
Table

NVMe-MI Command Request Message NVMe Admin Command SQE Mapping

Byte Description Byte Description

n/a

If the tunneled NVMe-MI Command requires
one or more Namespaces to be specified,
then the applicable Namespace Identifiers
are specified by the tunneled NVMe-MI
Command.

07:04
Namespace Identifier (NSID): This field should
be cleared to 0h by host software. Refer to the
NVM Express specification for more details.

n/a
These bytes have no equivalent in this
specification.

23:08 Refer to the NVM Express specification.

n/a

There is no equivalent of DPTR in this
specification. In NVMe-MI Send, the
Request Data is included in the Request
Data portion of the Request Message.

39:24

Data Pointer (DPTR): This field contains a pointer
to the start of the data buffer that contains the
Request Data portion of the NVMe-MI Command
that is being tunneled. If there is no Request Data
for this command, then this field is ignored. Refer
to the NVM Express specification for the definition
of this field.

03:00 NVMe-MI Message Header (NMH) 43:40

Command Dword 10 (CDW10): Dword 0 of the
Request Message (NMH) that is being tunneled
maps to CDW10 of the SQE. The byte ordering
within CDW10 is little endian (i.e., NMH byte 0
maps to CDW10 byte 0, NMH byte 1 maps to
CDW10 byte 1, etc.).

04 Opcode (OPC)

47:44

Command Dword 11 (CDW11): Dword 1 of the
Request Message (OPC and Reserved bytes 7:5)
that is being tunneled maps to CDW11 of the SQE.
The byte ordering within CDW11 is little endian
(i.e., OPC maps to CDW11 byte 0, the LSB of the
Reserved field (NVMe-MI Command Request
Message byte 5) maps to CDW11 byte 1, etc.).

07:05 Reserved

11:08 NVMe Management Dword 0 (NMD0) 51:48

Command Dword 12 (CDW12): Dword 2 of the
Request Message (NMD0) that is being tunneled
maps to CDW12 of the SQE. The byte ordering
within CDW12 is little endian (i.e., NMD0 byte 0
maps to CDW12 byte 0, NMD0 byte 1 maps to
CDW12 byte 1).

15:12 NVMe Management Dword 1 (NMD1) 55:52

Command Dword 13 (CDW13): Dword 3 of the
Request Message (NMD1) that is being tunneled
maps to CDW13 of the SQE. The byte ordering
within CDW13 is little endian (i.e., NMD1 byte 0
maps to CDW13 byte 0, NMD1 byte 1 maps to
CDW13 byte 1).

n/a
This field has no equivalent in this
specification.

59:56 Command Dword 14 (CDW14): Reserved.

n/a
This field has no equivalent in this
specification.

63:60 Command Dword 15 (CDW15): Reserved.

N-1:16 Request Data (REQD) n/a

Request Data is placed by host software into the
data buffer pointed to by DPTR. If the Request
Data is not dword granular, then the Request Data
shall be padded with the minimum number of bytes
of zeroes to make the Request Data dword
granular. The byte ordering within the data buffer
pointed to by DPTR is little endian (i.e., REQD byte
0 maps to byte 0 of the data buffer pointed to by
DPTR, REQD byte 1 maps to byte 1 of the data
buffer pointed to by DPTR, etc.).

NVM ExpressTM Management Interface Revision 1.1b

58

Figure 43: NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping
Table

NVMe-MI Command Request Message NVMe Admin Command SQE Mapping

Byte Description Byte Description

N+3:N Message Integrity Check (MIC) n/a
The Message Integrity Check is not used in the in-
band tunneling mechanism.

Figure 44: NVMe-MI Send Command Response Message to NVMe Admin Command CQE Mapping
Diagram

Management Interface Command Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

NVMe Management Response

 Response Data (optional)

Status

< Byte 0

< Byte 4

Bytes
8 to N - 1

< Byte N

<

Reserved

SQ Identifier

NVMe Completion Queue Entry Layout – Admin Command Set

SQ Head Pointer

Status Field Command IdentifierP

07:04
(DW1)

03:00
(DW0)

11:8
(DW2)

15:12
(DW3)

DescriptionOffset

31 23 15 7 0

Tunneled NVMe Management Response Tunneled
Status

NVM ExpressTM Management Interface Revision 1.1b

59

Figure 45: NVMe-MI Send Command Response Message to NVMe Admin Command CQE Mapping
Table

NVMe-MI Command Response Message NVMe Admin Command CQE Mapping

Byte Description Byte Description

00 MCTP Data (MCTPD) n/a
This field has no equivalent in the NVMe Admin
Command CQE.

01 NVMe-MI Message Parameters (NMP) n/a
This field has no equivalent in the NVMe Admin
Command CQE.

03:02 Reserved n/a
This field has no equivalent in the NVMe Admin
Command CQE.

04 Status (STATUS)

03:00

Command Specific (DW0): Dword 1 of the
Response Message (STATUS and NMRESP) that is
being tunneled maps to DW0 of the CQE. The byte
ordering within DW0 is little endian (i.e., STATUS
maps to DW0 byte 0, the LSB of the NMRESP field
(NVMe-MI Command Response Message byte 5)
maps to DW0 byte 1, etc.). Refer to Figure 46 for
additional details on this field.

07:05 NVMe Management Response (NMRESP)

N-1:8 Response Data (RESPD) n/a There is no Response Data for NVMe-MI Send.

N+3:N Message Integrity Check (MIC) n/a
The Message Integrity Check is not used in the in-
band tunneling mechanism.

n/a
These bytes have no equivalent in this
specification.

15:04 Refer to the NVM Express specification.

The definition of Dword 0 of the completion queue entry is in Figure 46.

Figure 46: NVMe-MI Send – Completion Queue Entry Dword 0 (NSCQED0)

Byte Description

31:08
Tunneled NVMe Management Response (TNMRESP): This field contains the NVMe Management
Response field from the NVMe-MI Command that is being tunneled in-band. If any errors are detected
in the NVMe Context as described in section 4.3.1.2, then this field shall be cleared to 0h.

07:00
Tunneled Status (TSTAT): This field contains the Status field from the NVMe-MI Command that is
being tunneled in-band. If any errors are detected in the NVMe Context as described in section 4.3.1.2,
then this field shall be cleared to 0h.

4.3.1.2 NVMe-MI Send Command Servicing Model

The NVMe-MI Send command servicing model is illustrated in Figure 47 as a series of phases and
NVMe/NVMe-MI Contexts. The phases of the NVMe-MI Send command servicing model are further
described in this section. The behavior of the portions of the figure in the NVMe Context are specified by
the NVM Express specification. The behavior of the portions of the figure in the NVMe-MI Context are
specified by this specification. The phases and NVMe/NVMe-MI Contexts are logical constructs that
illustrate the NVMe-MI Send command servicing model and do not mandate a particular implementation.

This section describes the NVMe-MI Send command servicing model starting at NVMe Processing as
shown in phase 1 of Figure 47. In phase 1, CDW0 to CDW9 are checked for errors per the NVM Express
specification. If any errors are encountered in CDW0 to CDW9, then the NVMe-MI Send command is
completed with an error status code in the Status Field as per the NVM Express specification and the
Tunneled Status and Tunneled NVMe Management Response fields shall be cleared to 0h.

If there are no errors in CDW0 to CDW9, then command servicing enters phase 2 where the portion of the
tunneled NVMe-MI Command in CDW10 to CDW15 is checked for errors. Note that if there is no Request

NVM ExpressTM Management Interface Revision 1.1b

60

Data, then CDW10 to CDW15 contain the entire tunneled NVMe-MI Command. If any errors are
encountered in the portion of the tunneled NVMe-MI Command in CDW10 to CDW15, then the NVMe-MI
Send command is completed with a status code of Successful Completion in the Status Field as defined in
the NVM Express specification. The Tunneled Status field contains the error Response Message Status for
the portion of the tunneled NVMe-MI Command in CDW10 to CDW15 and the Tunneled NVMe
Management Response field contains the NVMe Management Response field from the NVMe-MI
Command that is being tunneled in-band.

If there are no errors in phase 2, then command servicing enters phase 3 where there is a check to
determine if there is any Request Data for the tunneled NVMe-MI Command. If there is no Request Data
for the tunneled NVMe-MI Command, then command servicing skips to phase 5. If there is Request Data,
then the Request Data is transferred from the buffer pointed to by DPTR. If any errors are encountered
transferring the Request Data, then the command is completed with an error status code in the Status Field
as per the NVM Express specification and the Tunneled Status and Tunneled NVMe Management
Response fields shall be cleared to 0h.

If there are no errors transferring the data, then command servicing enters phase 4 where the whole
tunneled NVMe-MI Command is constructed from CDW10 to CDW15 and the Request Data that was
transferred. If any errors are encountered in the tunneled NVMe-MI Command, then the NVMe-MI Send
command is completed with a status code of Successful Completion in the Status Field as defined in the
NVM Express specification. The Tunneled Status field contains the appropriate error Response Message
Status and the Tunneled NVMe Management Response field contains the NVMe Management Response
field from the NVMe-MI Command that is being tunneled in-band.

If there are no errors in phase 4, then command servicing enters phase 5 where the tunneled NVMe-MI
Command finishes processing. If any errors are encountered processing the tunneled NVMe-MI Command,
then the NVMe-MI Send command is completed with a status code of Successful Completion in the Status
Field as defined in the NVM Express specification and the Tunneled Status field contains the appropriate
error Response Message Status. If the tunneled NVMe-MI Command is processed successfully, then the
NVMe-MI Send command is completed with a status code of Successful Completion in the Status Field as
defined in the NVM Express specification. The Tunneled Status field contains a Response Message Status
of Success for the tunneled NVMe-MI Command and the Tunneled NVMe Management Response field
contains the NVMe Management Response field from the NVMe-MI Command that is being tunneled in-
band.

NVM ExpressTM Management Interface Revision 1.1b

61

Figure 47: NVMe-MI Send Command Servicing Model

Check for errors in
CDW0 to CDW9.

NVMe
Error(s)? YES

Check for errors in
tunneled NVMe-MI

Command in CDW10
to CDW15 and
Request Data.

NO

Transfer
Request

Data.

NVMe
Error(s)?

YES

NVMe-MI
Error(s)?

YES

NO

Process the
tunneled NVMe-MI

Command.

Set Tunneled Status
set to appropriate
NVMe-MI error.

Check for errors in
tunneled NVMe-MI

Command in CDW10
to CDW15.

NVMe-MI
Error(s)?

Return NVMe Successful
Completion in Status Field.

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

NO

NO

Phase
1

Phase
2

Return NVMe error status
code in Status Field. TSTAT

and TNMRESP cleared to 0h.

Phase
3

Return NVMe error
status code in Status

Field. TSTAT and
TNMRESP cleared to

0h.

Phase
4

Set Tunneled Status
to Success

NVMe-MI
Error(s)?

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

Return NVMe Successful
Completion in Status Field.

NO

Phase
5

Start of NVMe
Processing

Is there Request
Data?

YES

NO

N
V

M
e

C
o

n
te

xt
N

V
M

e
C

o
n

te
xt

N
V

M
e

C
o

n
te

xt
N

V
M

e-
M

I
C

o
n

te
xt

N
V

M
e-

M
I

C
o

n
te

xt

Return NVMe Successful
Completion in Status Field.

N
V

M
e-

M
I

C
o

n
te

xt

N
V

M
e

C
o

n
te

xt

NVM ExpressTM Management Interface Revision 1.1b

62

4.3.2 NVMe-MI Receive Command

The NVMe-MI Receive command is an NVMe Admin Command as defined by this specification and the
NVM Express specification. It is used to tunnel an NVMe-MI Command in-band from host software to an
NVMe Controller that transfers data from an NVMe Controller to a host (similar to a read operation). The
data being transferred is in one or more of the following locations: Response Data, NVMe Management
Response. Figure 57 specifies which NVMe-MI Commands are tunneled via the NVMe-MI Receive
command.

NVMe-MI Commands may apply to the NVM Subsystem, Controllers, and/or Namespaces. If the tunneled
NVMe-MI Command applies to one or more Controllers, then the applicable Controller(s) are specified by
fields in the tunneled NVMe-MI Command. Note that unlike some other Admin Commands, the Controller
to which the NVMe-MI Receive command is issued is not used to determine which Controller the tunneled
NVMe-MI Command applies to. If the tunneled NVMe-MI Command applies to one or more Namespaces,
then the applicable Namespace(s) are specified by fields in the tunneled NVMe-MI Command. Note that
the Namespace Identifier (NSID) field of the NVMe-MI Receive command (bytes 7:4 of the Submission
Queue Entry) is not used and should be cleared to 0h by host software.

The mapping of how an NVMe-MI Command is tunneled inside of an NVMe-MI Receive command is
described in section 4.3.2.1. The NVMe-MI Receive command servicing model is described in section
4.3.2.2.

4.3.2.1 NVMe-MI Receive Command Request Message to NVMe Admin Command SQE Mapping

In order to tunnel an NVMe-MI Command in-band via NVMe-MI Receive, an NVMe-MI Request Message
is mapped onto an NVMe Submission Queue Entry (SQE) as shown pictorially in Figure 48 and in table
form in Figure 49. An NVMe-MI Response Message is mapped on to an NVMe Completion Queue Entry
(CQE) as shown pictorially in Figure 48 and in table form in Figure 50. Refer to the NVM Express
specification for details on an NVMe Submission Queue Entry and NVMe Completion Queue Entry.

NVM ExpressTM Management Interface Revision 1.1b

63

Figure 48: NVMe-MI Receive Command Request/Response Message to NVMe Admin Command
SQE/CQE Mapping Diagram

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

< Byte 0Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode < Byte 4

< Byte 8NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

< Byte 12

Bytes
16 to N - 1

< Byte N

Reserved

Data Buffer

<

NVMe Command Format – Admin Command Set

Management Interface Command Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

NVMe Management Response

 Response Data (optional)

Status

< Byte 0

< Byte 4

Bytes
8 to N - 1

< Byte N

<

Management Interface Command Request Message Format

Command Dword 0
(CDW0)

Namespace Identifier
(NSID)

Reserved

Metadata Pointer (MPTR)

Data Pointer (DPTR)

Command Dword 10
(CDW10)

Command Dword 11
(CDW11)

Command Dword 12
(CDW12)

Command Dword 13
(CDW13)

Command Dword 14
(CDW14)

Command Dword 15
(CDW15)

03:00

07:04

15:08

23:16

39:24

43:40

47:44

51:48

55:52

59:56

63:60

DescriptionOffset

NVMe Completion Queue Entry Layout – Admin Command Set

31 0

Tunneled NVMe Management Response

Reserved

SQ Identifier SQ Head Pointer

Status Field Command IdentifierP

07:04
(DW1)

03:00
(DW0)

11:8
(DW2)

15:12
(DW3)

DescriptionOffset

31 23 15 7 0

Tunneled
Status

NVM ExpressTM Management Interface Revision 1.1b

64

Figure 49: NVMe-MI Receive Command Request/Response Message to NVMe Admin Command
SQE/CQE Mapping Table

NVMe-MI Command Request Message NVMe Admin Command SQE Mapping

Byte Description Byte Description

n/a
This field has no equivalent in this
specification.

03:00
Command Dword 0 (CDW0): Refer to the NVM
Express specification.

n/a

If the tunneled NVMe-MI Command requires
one or more Namespaces to be specified,
then the applicable Namespace Identifiers are
specified by the tunneled NVMe-MI
Command.

07:04
Namespace Identifier (NSID): This field should be
cleared to 0h by host software. Refer to the NVM
Express specification for more details.

n/a
These bytes have no equivalent in this
specification.

23:08 Refer to the NVM Express specification.

n/a

There is no equivalent of DPTR in this
specification. In NVMe-MI Receive, the
Response Data is included in the Response
Data portion of the Response Message.

39:24

Data Pointer (DPTR): This field contains a pointer
to the start of the data buffer that contains the
Response Data portion of the NVMe-MI Command
that is being tunneled. If there is no Response Data
for this command, then this field is ignored. Refer to
the NVM Express specification for the definition of
this field.

03:00 NVMe-MI Message Header (NMH) 43:40

Command Dword 10 (CDW10): Dword 0 of the
Request Message (NMH) that is being tunneled
maps to CDW10 of the SQE. The byte ordering
within CDW10 is little endian (i.e., NMH byte 0 maps
to CDW10 byte 0, NMH byte 1 maps to CDW10 byte
1, etc.).

04 Opcode (OPC)

47:44

Command Dword 11 (CDW11): Dword 1 of the
Request Message (OPC and Reserved bytes 7:5)
that is being tunneled maps to CDW11 of the SQE.
The byte ordering within CDW11 is little endian (i.e.,
OPC maps to CDW11 byte 0, the LSB of the
Reserved field (NVMe-MI Command Request
Message byte 5) maps to CDW11 byte 1, etc.).

07:05 Reserved

11:08 NVMe Management Dword 0 (NMD0) 51:48

Command Dword 12 (CDW12): Dword 2 of the
Request Message (NMD0) that is being tunneled
maps to CDW12 of the SQE. The byte ordering
within CDW12 is little endian (i.e., NMD0 byte 0
maps to CDW12 byte 0, NMD0 byte 1 maps to
CDW12 byte 1).

15:12 NVMe Management Dword 1 (NMD1) 55:52

Command Dword 13 (CDW13): Dword 3 of the
Request Message (NMD1) that is being tunneled
maps to CDW13 of the SQE. The byte ordering
within CDW13 is little endian (i.e., NMD1 byte 0
maps to CDW13 byte 0, NMD1 byte 1 maps to
CDW13 byte 1).

n/a
This field has no equivalent in this
specification.

59:56 Command Dword 14 (CDW14): Reserved.

n/a
This field has no equivalent in this
specification.

63:60 Command Dword 15 (CDW15): Reserved.

N-1:16 Request Data (REQD) n/a There is no Request Data for NVMe-MI Receive.

N+3:N Message Integrity Check (MIC) n/a
The Message Integrity Check is not used in the in-
band tunneling mechanism.

NVM ExpressTM Management Interface Revision 1.1b

65

Figure 50: NVMe-MI Receive Command Response Message to NVMe Admin Command CQE Mapping
Table

NVMe-MI Command Response Message NVMe Admin Command CQE

Byte Description Byte Description

00 MCTP Data (MCTPD) n/a
This field has no equivalent in the NVMe Admin
Command CQE.

01 NVMe-MI Message Parameters (NMP) n/a
This field has no equivalent in the NVMe Admin
Command CQE.

03:02 Reserved n/a
This field has no equivalent in the NVMe Admin
Command CQE.

04 Status (STATUS)

03:00

Command Specific (DW0): Dword 1 of the
Response Message (STATUS and NMRESP) that is
being tunneled maps to DW0 of the CQE. The byte
ordering within DW0 is little endian (i.e., STATUS
maps to DW0 byte 0, the LSB of the NMRESP field
(NVMe-MI Command Response Message byte 5)
maps to DW0 byte 1, etc.). Refer to Figure 51 for
additional details on this field.

0 7:05 NVMe Management Response (NMRESP)

N-1:8 Response Data (RESPD) n/a

Response Data is placed by the NVMe Controller
into the data buffer pointed to by DPTR. If the
Response Data size is not dword granular, then the
Response Data shall be padded with the minimum
number of bytes of zeroes to make the Response
Data dword granular. The byte ordering within the
data buffer pointed to by DPTR is little endian (i.e.,
RESPD byte 0 maps to byte 0 of the data buffer
pointed to by DPTR, RESPD byte 1 maps to byte 1
of the data buffer pointed to by DPTR, etc.).

N+3:N Message Integrity Check (MIC) n/a
The Message Integrity Check is not used in the in-
band tunneling mechanism.

n/a
These bytes have no equivalent in this
specification.

15:04 Refer to the NVM Express specification.

The definition of Dword 0 of the completion queue entry is in Figure 51.

Figure 51: NVMe-MI Receive – Completion Queue Entry Dword 0 (NRCQED0)

Byte Description

31:08
Tunneled NVMe Management Response (TNMRESP): This field contains the NVMe Management
Response field from the NVMe-MI Command that is being tunneled in-band. If any errors are detected
in the NVMe Context as described in section 4.3.2.2, then this field shall be cleared to 0h.

07:00
Tunneled Status (TSTAT): This field contains the Status field from the NVMe-MI Command that is
being tunneled in-band. If any errors are detected in the NVMe Context as described in section 4.3.2.2,
then this field shall be cleared to 0h.

4.3.2.2 NVMe-MI Receive Command Servicing Model

The NVMe-MI Receive command servicing model is illustrated in Figure 52 as a series of phases (described
in this section) and NVMe/NVMe-MI Contexts. The phases of the NVMe-MI Receive command servicing
model are further described in this section. The behavior of the portions of the figure in the NVMe Context
are specified by the NVM Express specification. The behavior of the portions of the figure in the NVMe-MI
Context are specified by this specification. The phases and NVMe/NVMe-MI Contexts are logical constructs
that illustrate the NVMe-MI Receive command servicing model and do not mandate a particular
implementation.

NVM ExpressTM Management Interface Revision 1.1b

66

This section describes the NVMe-MI Receive command servicing model starting at NVMe Processing as
shown in phase 1 of Figure 52. In phase 1, CDW0 to CDW9 are checked for errors per the NVM Express
specification. If any errors are encountered in CDW0 to CDW9, then the command is completed with an
error status code in the Status Field as per the NVM Express specification and the Tunneled Status and
Tunneled NVMe Management Response fields shall be set to 0h.

If there are no errors in CDW0 to CDW9, then command servicing enters phase 2 where the tunneled
NVMe-MI Command in CDW10 to CDW15 is checked for errors. If any errors are encountered in the
tunneled NVMe-MI Command in CDW10 to CDW15, then the NVMe-MI Receive command is completed
with a status code of Successful Completion in the Status Field as defined in the NVM Express specification.
The Tunneled Status field contains the appropriate error Response Message Status and the Tunneled
NVMe Management Response field contains the NVMe Management Response field from the NVMe-MI
Command that is being tunneled in-band.

If there are no errors in phase 2, then command servicing enters phase 3 where the tunneled NVMe-MI
Command finishes processing. If any errors are encountered processing the tunneled NVMe-MI Command,
then the NVMe-MI Receive command is completed with a status code of Successful Completion in the
Status Field as defined in the NVM Express specification. The Tunneled Status field contains the
appropriate error Response Message Status and the Tunneled NVMe Management Response field
contains the NVMe Management Response field from the NVMe-MI Command that is being tunneled in-
band.

If there are no errors in phase 3, then command servicing enters phase 4 where there is a check to
determine if there is any Response Data for the tunneled NVMe-MI Command. If there is no Response
Data for the tunneled NVMe-MI Command, then command servicing skips to phase 5. If there is Response
Data, then the Response Data is transferred to the buffer pointed to by DPTR. If any errors are encountered
transferring the Response Data then the command is completed with an error status code in the Status
Field as per the NVM Express specification and the Tunneled Status and Tunneled NVMe Management
Response fields shall be set to 0h.

If there are no errors in phase 4, then command servicing enters phase 5 where the NVMe-MI Receive
command is completed with a status code of Successful Completion in the Status Field as defined in the
NVM Express specification. The Tunneled Status field contains a Response Message Status of Success
for the tunneled NVMe-MI Command and the Tunneled NVMe Management Response field contains the
NVMe Management Response field from the NVMe-MI Command that is being tunneled in-band.

NVM ExpressTM Management Interface Revision 1.1b

67

Figure 52: NVMe-MI Receive Command Servicing Model

NO

Process the
tunneled NVMe-MI

Command.

Check for errors in
tunneled NVMe-MI

Command in CDW10
to CDW15.

NVMe-MI
Error(s)?

Return NVMe Successful
Completion in Status Field.

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

NO

Phase
2

NVMe-MI
Error(s)?

YES
Set Tunneled Status
set to appropriate
NVMe-MI error.

Return NVMe
Successful Completion

in Status Field.

NO

Phase
3

NVMe
Error(s)?

YES
Transfer

Response
Data.

Phase
4

Return NVMe error status
code in Status Field. TSTAT
and TNMRESP cleared to 0h.

Set Tunneled
Status to
Success

Return NVMe Successful
Completion in Status Field.

Phase
5

NO

Check for errors in
CDW0 to CDW9.

NVMe
Error(s)?

YES

Phase
1 Return NVMe error status

code in Status Field. TSTAT
and TNMRESP cleared to 0h.

Start of NVMe
Processing

Is there
Response Data?

YES

NO

N
V

M
e

C
o

n
te

xt
N

V
M

e-
M

I
C

o
n

te
xt

N
V

M
e

C
o

n
te

xt
N

V
M

e-
M

I
C

o
n

te
xt

N
V

M
e

C
o

n
te

xt

N
V

M
e-

M
I

C
o

n
te

xt

N
V

M
e

C
o

n
te

xt

NVM ExpressTM Management Interface Revision 1.1b

68

5 Management Interface Command Set

The Management Interface Command Set defines the Command Messages that may be submitted by a
Requester when the NMIMT value is set to NVMe-MI Command. The Management Interface Command
Set is applicable to both the out-of-band mechanism and the in-band tunneling mechanism.

The NVMe-MI Message structure with all fields that are common to all NVMe-MI Messages are defined in
section 3.1. The Response Message structure for the Management Interface Command Set is defined in
section 4.1.2. The Message Body for the Management Interface Command Set is shown in Figure 54.
Command specific fields for the Management Interface Command Set are defined in this section.

Figure 53: NVMe-MI Command Request Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode

NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

Reserved

Byte 0<

Byte 4<

Byte 8<

Byte 12<

Bytes
16 to N-1

<

Byte N<

M
E
B

Figure 54: NVMe-MI Command Request Message Description (NCREQ)

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to section 3.1.

04
Opcode (OPC): This field specifies the opcode of the NVMe-MI Command to be processed. Refer
to Figure 55.

07:05 Reserved

11:08 NVMe Management Dword 0 (NMD0): This field is command specific Dword 0.

15:12 NVMe Management Dword 1 (NMD1): This field is command specific Dword 1.

N-1:16 Request Data (REQD): (Optional)

N+3:N Message Integrity Check (MIC): Refer to section 3.1.

The Request Data field is an optional field included in some NVMe-MI Commands. If the size of the Request
Data does not match the specified Data Length of the Command Message, then the Responder responds
with a Generic Error Response and Invalid Command Input Data Size status.

Figure 55 defines the Management Interface Command Set opcodes.

NVM ExpressTM Management Interface Revision 1.1b

69

Figure 55: Opcodes for Management Interface Command Set

Opcode Command

00h Read NVMe-MI Data Structure

01h NVM Subsystem Health Status Poll

02h Controller Health Status Poll

03h Configuration Set

04h Configuration Get

05h VPD Read

06h VPD Write

07h Reset

08h SES Receive

09h SES Send

0Ah Management Endpoint Buffer Read

0Bh Management Endpoint Buffer Write

0Ch to BFh Reserved

C0h to FFh Vendor specific

Figure 56 shows the Management Interface Command Set commands that are mandatory, optional, and
prohibited for an NVMe Storage Device as well as for an NVMe Enclosure using the out-of-band
mechanism. Figure 57 shows Management Interface Command Set commands that are mandatory,
optional, and prohibited for an NVMe Storage Device as well as for an NVMe Enclosure using the in-band
tunneling mechanism.

Figure 56: Management Interface Command Set Support using an Out-of-Band
Mechanism

NVMe
Storage
Device

O/M/P
1

NVMe
Enclosure

O/M/P
1

Command

M M Read NVMe-MI Data Structure

M O
3
 NVM Subsystem Health Status Poll

M O
3
 Controller Health Status Poll

M M
2
 Configuration Set

M M
2
 Configuration Get

M O
3
 VPD Read

M O
3
 VPD Write

M O
3
 Reset

P M SES Receive

P M SES Send

O M Management Endpoint Buffer Read

O M Management Endpoint Buffer Write

NVM ExpressTM Management Interface Revision 1.1b

70

Figure 56: Management Interface Command Set Support using an Out-of-Band
Mechanism

NVMe
Storage
Device

O/M/P
1

NVMe
Enclosure

O/M/P
1

Command

O O Vendor specific

NOTES:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited from being supported. An NVMe

Enclosure that is also an NVMe Storage Device (i.e., implements namespaces) shall implement
mandatory commands required by either an NVMe Storage Device or an NVMe Enclosure and may
implement optional commands allowed by either an NVMe Storage Device or an NVMe Enclosure.

2. This command was architected for an NVMe Storage Device. The mapping of Health Status
Change Configuration Identifier to an NVMe Enclosure is outside the scope of this specification.

3. This command was architected for an NVMe Storage Device. The mapping of this command to an
NVMe Enclosure is outside the scope of this specification.

Figure 57: Management Interface Command Set Support using In-Band Tunneling
Mechanism

NVMe Storage Device NVMe Enclosure

Command

O/M/P1
NVMe-MI

Send/Receive
Mapping3

O/M/P1
NVMe-MI

Send/Receive
Mapping3

M NVMe-MI Receive O2 NVMe-MI Receive Read NVMe-MI Data Structure

M NVMe-MI Receive O2 NVMe-MI Receive NVM Subsystem Health Status Poll

M NVMe-MI Receive O2 NVMe-MI Receive Controller Health Status Poll

M NVMe-MI Send O2 NVMe-MI Send Configuration Set

M NVMe-MI Receive O2 NVMe-MI Receive Configuration Get

M NVMe-MI Receive O2 NVMe-MI Receive VPD Read

M NVMe-MI Send O2 NVMe-MI Send VPD Write

M NVMe-MI Send O2 NVMe-MI Send Reset

P n/a M NVMe-MI Receive SES Receive

P n/a M NVMe-MI Send SES Send

P n/a P n/a Management Endpoint Buffer Read

P n/a P n/a Management Endpoint Buffer Write

O Vendor Specific O Vendor Specific Vendor specific

NOTES:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited from being supported. An NVMe

Enclosure that is also an NVMe Storage Device (i.e., implements namespaces) shall implement
mandatory commands required by either an NVMe Storage Device or an NVMe Enclosure and may
implement optional commands allowed by either an NVMe Storage Device or an NVMe Enclosure.

2. This command was architected for an NVMe Storage Device. The mapping of this command to an
NVMe Enclosure is outside the scope of this specification.

3. This column indicates whether the NVMe-MI Command is tunneled in-band using the NVMe-MI Send
or NVMe-MI Receive command.

NVM ExpressTM Management Interface Revision 1.1b

71

Figure 58: NVMe-MI Command Response Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

NVMe Management Response

 Response Data (optional)

Status

Byte 0<

Byte 4<

Bytes
8 to N-1

<

Byte N<

Figure 59: NVMe-MI Command Response Message Description (NCRESP)

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to section 3.1.

04
Status (STATUS): This field indicates the status of the NVMe-MI Command.
Refer to section 4.1.2.

07:05 NVMe Management Response (NMRESP): This field is command specific.

N-1:08 Response Data (RESPD): (Optional)

N+3:N Message Integrity Check (MIC): Refer to section 3.1.

5.1 Configuration Get

The Configuration Get command allows the Requester to read the current configuration of a Responder.

The command uses NVMe Management Dwords 0 and 1. The format of NVMe Management Dwords 0 and
1 are shown in Figure 60 and Figure 61 respectively. There is no Request Data included in a Configuration
Get command.

Figure 60: Configuration Get – NVMe Management Dword 0

Bit Description

31:08 Configuration Identifier specific

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is being read.
Refer to Figure 62.

Figure 61: Configuration Get – NVMe Management Dword 1

Bit Description

31:00 Configuration Identifier specific

NVMe-MI Configuration Identifiers are listed in Figure 62.

NVM ExpressTM Management Interface Revision 1.1b

72

Figure 62: NVMe Management Interface Configuration Identifiers

Configuration
Identifier

Out-of-Band
Mechanism

O/M/P
1

In-Band
Tunneling
Mechanism

O/M/P
1

Description

00h - - Reserved

01h M P SMBus/I2C Frequency

02h M M Health Status Change

03h M P MCTP Transmission Unit Size

04h to BFh - - Reserved

C0h to FFh O O Vendor Specific

NOTES:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited from being supported.

The NVMe Management Response field is configuration specific.

5.1.1 SMBus/I2C Frequency (Configuration Identifier 01h)

The SMBus/I2C Frequency configuration indicates the current frequency of the SMBus port, if applicable.

The configuration specific fields in NVMe Management Dword 0 are shown in Figure 63. The configuration
specific fields in NVMe Management Dword 1 are reserved. The current SMBus/I2C Frequency
configuration is returned in the NVMe Management Response field as shown in Figure 64.

Figure 63: SMBus/I2C Frequency – NVMe Management Dword 0

Bit Description

31:24 Port Identifier: This field specifies the port whose SMBus/I2C Frequency is indicated.

23:08 Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is
being read. Refer to Figure 62.

Figure 64: SMBus/I2C Frequency – NVMe Management Response

Bit Description

23:04 Reserved

03:00

SMBus/I2C Frequency: The current frequency of the SMBus/I2C. The
default value for this field following a reset or power cycle is 1h, if SMBus
is supported.

Value Description

0h SMBus is not supported or is disabled

1h 100 kHz

2h 400 kHz

3h 1 MHz

4h to Fh Reserved

NVM ExpressTM Management Interface Revision 1.1b

73

5.1.2 Health Status Change (Configuration Identifier 02h)

The Health Status Change configuration is used to clear the selected status bits in the Composite Controller
Status field using Configuration Set. A Requester should not use Configuration Get for this Configuration
Identifier.

The configuration specific fields in NVMe Management Dwords 0 and 1 are reserved. A Responder shall
complete a Configuration Get command on this Configuration Identifier with a Success Response. The
NVMe Management Response field is reserved and there is no Response Data.

5.1.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

The MCTP Transmission Unit Size configuration indicates the current MCTP Transmission Unit Size of the
Port Identifier specified in Dword 0.

The configuration specific fields in NVMe Management Dword 0 are shown in Figure 65. The configuration
specific fields in NVMe Management Dword 1 are reserved. The current Transmission unit size of the
specified port is returned in the NVMe Management Response field as shown in Figure 66.

Figure 65: MCTP Transmission Unit Size – NVMe Management Dword 0

Bit Description

31:24
Port Identifier: This field specifies the port whose MCTP Transmission Unit Size is
indicated.

23:08 Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is
being read. Refer to Figure 62.

Figure 66: MCTP Transmission Unit Size – NVMe Management Response

Bit Description

23:16 Reserved

15:00
MCTP Transmission Unit Size: This field contains the MCTP
Transmission Unit Size in bytes to be used by the port. The default value
for this field following a reset or power cycle is 40h (64).

5.2 Configuration Set

The Configuration Set command allows the Requester to modify the current configuration of a Responder.

The command uses NVMe Management Dwords 0 and 1. The format of NVMe Management Dwords 0 and
1 are shown in Figure 67 and Figure 68 respectively. There is no Request Data included in a Configuration
Set command.

Figure 67: Configuration Set – NVMe Management Dword 0

Bit Description

31:08 Configuration Identifier specific

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is being written.
Refer to Figure 62.

NVM ExpressTM Management Interface Revision 1.1b

74

Figure 68: Configuration Set – NVMe Management Dword 1

Bit Description

31:00 Configuration Identifier specific

NVMe-MI Configuration Identifiers are listed in Figure 62. Specifying a reserved identifier in the
Configuration Identifier field causes the command to complete with an Invalid Parameter Error Response.

The NVMe Management Response field is configuration Identifier specific.

5.2.1 SMBus/I2C Frequency (Configuration Identifier 01h)

The SMBus/I2C Frequency configuration specifies a new frequency for the SMBus port.

The configuration specific fields in NVMe Management Dword 0 are shown in Figure 69. The configuration
specific fields in NVMe Management Dword 1 are reserved. NVMe Management Response field is
reserved.

After successful completion of this command, the SMBus/I2C frequency is updated to the specified
frequency. A Management Controller should not change this configuration while there are other Command
Messages outstanding.

If the specified frequency is not supported or the Port Identifier specified is not an SMBus/I2C port, the
Management Endpoint shall respond with an Invalid Parameter Error Response.

Figure 69: SMBus/I2C Frequency – NVMe Management Dword 0

Bit Description

31:24 Port Identifier: This field specifies the port whose SMBus/I2C Frequency is specified.

23:12 Reserved

11:08

SMBus/I2C Frequency: This field specifies the new frequency for the specified
SMBus/I2C port.

Value Description

0h Reserved

1h 100 kHz

2h 400 kHz

3h 1 MHz

4h to Fh Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is

being written. Refer to Figure 62.

5.2.2 Health Status Change (Configuration Identifier 02h)

This Configuration Identifier is used to clear selected status bits in the Composite Controller Status field of
the NVM Subsystem Health Data Structure (refer to Figure 87) returned by the NVM Subsystem Health
Status Poll command.

The Composite Controller Status field of the NVM Subsystem Health Data Structure is used to report the
occurrence of health and status events associated with the NVM Subsystem. When a bit in this field is set
to ‘1’, it remains a ‘1’ until cleared by a Requester.

NVM ExpressTM Management Interface Revision 1.1b

75

A Configuration Set command that selects Health Status Change may be used to clear corresponding bits
selected in NVMe Management Dword 1 of the Composite Controller Status field to ‘0’.

A Configuration Set command that selects Health Status Change operates independently in the out-of-band
mechanism and the in-band tunneling mechanism.

An NVMe Storage Device or NVMe Enclosure supporting the Health Status Change Configuration Identifier
in the out-of-band mechanism shall have an independent copy of the Composite Controller Status dedicated
to the out-of-band mechanism. In the out-of-band mechanism, a Configuration Set command that selects
Health Status Change only applies to the copy of the Composite Controller Status dedicated to the out-of-
band mechanism. Refer to section 5.4 for more details on Composite Controller Status.

An NVMe Storage Device or NVMe Enclosure supporting the Health Status Change Configuration Identifier
in the in-band tunneling mechanism shall have an independent copy of the Composite Controller Status
dedicated to the in-band tunneling mechanism. In the in-band tunneling mechanism, a Configuration Set
command that selects Health Status Change only applies to the copy of the Composite Controller Status
dedicated to the in-band tunneling mechanism.

Figure 70: Health Status Change - NVMe Management Dword 0

Bit Description

31:08 Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration

that is being written. Refer to Figure 62.

Figure 71: Health Status Change – NVMe Management Dword 1

Bit Description

31:12 Reserved

11
Critical Warning (CWARN): When this bit is set to ‘1’, bit 12 in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

10
Available Spare (SPARE): When this bit is set to ‘1’, bit 11 in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

09
Percentage Used (PDLU): When this bit is set to ‘1’, bit 10 in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

08
Composite Temperature (CTEMP): When this bit is set to ‘1’, bit 9 in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

07
Controller Status Change (CSCHNG): When this bit is set to ‘1’, bit 8 in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

06
Firmware Activated (FA): When this bit is set to ‘1’, bit 7 in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

05
Namespace Attribute Changed (NAC): When this bit is set to ‘1’, bit 6 in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

04
Controller Enable Change Occurred (CECO): When this bit is set to ‘1’, bit 5 in
the Composite Controller Status field of the NVM Subsystem Health Data Structure
is cleared to ‘0’.

03
NVM Subsystem Reset Occurred (NSSRO): When this bit is set to ‘1’, bit 4 in the
Composite Controller Status field of the NVM Subsystem Health Data Structure is
cleared to ‘0’.

NVM ExpressTM Management Interface Revision 1.1b

76

Figure 71: Health Status Change – NVMe Management Dword 1

Bit Description

02
Shutdown Status (SHST): When this bit is set to ‘1’, bit 2 in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

01
Controller Fatal Status (CFS): When this bit is set to ‘1’, bit 1 in the Composite
Controller Status field of the NVM Subsystem Health Data Structure is cleared to
‘0’.

00
Ready (RDY): When this bit is set to ‘1’, bit 0 in the Composite Controller Status
field of the NVM Subsystem Health Data Structure is cleared to ‘0’.

5.2.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

The MCTP Transmission Unit Size configuration specifies a new MCTP Transmission Unit Size for the
specified Port Identifier. A Management Controller should check the maximum MCTP Transmission Unit
Size for the port reported by the Management Endpoint using the Read NVMe-MI Data Structure command
(refer to Figure 91).

The configuration specific fields in NVMe Management Dwords 0 and 1 are shown in Figure 72 and Figure
73 respectively. The NVMe Management Response field is reserved.

After successful completion of this command, the MCTP Transmission Unit Size for MCTP packets on the
specified port is updated to the specified size for future Command Messages. A Management Controller
should not change this configuration while there are other commands outstanding. Changing this
configuration while there are other Request Messages outstanding results in undefined behavior. If a
Request Message is sent with a given MCTP Transmission Unit Size, then issuing a Replay Control
Primitive after changing the MCTP Transmission Unit Size to a different value results in undefined behavior.

If the specified MCTP Transmission Unit Size is not supported or the Port Identifier specified is not valid,
the Management Endpoint shall abort the command and send a Response Message with an Invalid
Parameter Error Response.

Figure 72: MCTP Transmission Unit Size – NVMe Management Dword 0

Bit Description

31:24 Port Identifier: This field specifies the port whose MCTP Transmission Unit Size is specified.

23:08 Reserved

07:00
Configuration Identifier: This field specifies the identifier of the Configuration that is being written.
Refer to Figure 62.

Figure 73: MCTP Transmission Unit Size – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
MCTP Transmission Unit Size: This field contains the MCTP Transmission Unit Size in
bytes to be used by the port.

5.3 Controller Health Status Poll

The Controller Health Status Poll command is used to efficiently determine changes in health status
attributes associated with one or more Controllers in the NVM Subsystem.

NVM ExpressTM Management Interface Revision 1.1b

77

The Controller Health Status Poll command operates independently in the out-of-band mechanism and the
in-band tunneling mechanism.

An NVMe Storage Device or NVMe Enclosure supporting the Controller Health Status Poll command in the
out-of-band mechanism shall have an independent copy of the Controller Health Data Structure (refer to
Figure 77) and the Controller Health Status Changed Flags (refer to Figure 78) dedicated to the out-of-band
mechanism. In the out-of-band mechanism, a Controller Health Status Poll command only applies to the
copy of the Controller Health Data Structure and the Controller Health Status Changed Flags dedicated to
the out-of-band mechanism.

An NVMe Storage Device or NVMe Enclosure supporting the Controller Health Status Poll command in the
in-band tunneling mechanism shall have an independent copy of the Controller Health Data Structure and
the Controller Health Status Changed Flags dedicated to the in-band tunneling mechanism. In the in-band
tunneling mechanism, a Controller Health Status Poll command only applies to the copy of the Controller
Health Data Structure and the Controller Health Status Changed Flags dedicated to the in-band tunneling
mechanism.

The Controller Health Status Poll command uses NVMe Management Dwords 0 and 1. The format of NVMe
Management Dword 0 is shown in Figure 74 and the format of NVMe Management Dword 1 is shown in
Figure 75.

Figure 74: Controller Health Status Poll – NVMe Management Dword 0

Bit Description

31

Report All (ALL): When this bit is set to ‘1’, a Controller Health Data Structure is returned regardless of
the status of the Controller Health Status Changed Flags. The Controller selection fields (SCTLID,
MAXRENT, INCF, INCPF, and INCVF) still apply even when this bit is set to ‘1’ but the error selection
bits (CWARN, SPARE, PDLU, CTEMP, and CSTS in Figure 75) do not apply.

When this bit is cleared to ‘0’, a Controller Health Data Structure is returned based on the Controller
selection fields (SCTLID, MAXRENT, INCF, INCPF, and INCVF) and error selection fields (CWARN,
SPARE, PDLU, CTEMP, and CSTS in Figure 75).

30:27 Reserved

26
Include SR-IOV Virtual Functions (INCVF): When this bit is set to ‘1’, a Controller Health Data
Structure is returned for Controllers associated with SR-IOV Virtual Functions (VFs).

25
Include SR-IOV Physical Functions (INCPF): When this bit is set to ‘1’, a Controller Health Data
Structure is returned for Controllers associated with SR-IOV Physical Functions (PFs).

24
Include PCI Functions (INCF): When this bit is set to ‘1’, a Controller Health Status Data Structure is
returned for Controllers associated with non-SR-IOV PCI Functions.

23:16
Maximum Response Entries (MAXRENT): This field specifies the maximum number of Controller
Health Data Structure entries that may be returned in the completion. This is a 0’s based field. The
maximum number of entries is 255. Specifying 256 entries is interpreted as an Invalid Parameter.

15:00
Starting Controller ID (SCTLID): This field specifies the Controller ID of the first Controller whose
Controller Health Data Structure may be returned.

Figure 75: Controller Health Status Poll – NVMe Management Dword 1

Bit Description

31
Clear Changed Flags (CCF): When this bit is set to ‘1’, the Controller Health Status Changed Flags
are cleared in Controllers whose Controller Health Data Structure is contained in the Response Data.

30:05 Reserved

04
Critical Warning (CWARN): When this bit is set to ‘1’, a Controller Health Data Structure is returned
for Controllers with the Critical Warning bit set to ‘1’ in their Controller Health Status Changed Flags.

03
Available Spare (SPARE): When this bit is set to ‘1’, a Controller Health Data Structure is returned
for Controllers with the Available Spare bit set to ‘1’ in their Controller Health Status Changed Flags.

02
Percentage Used (PDLU): When this bit is set to ‘1’, a Controller Health Data Structure is returned for
Controllers with the Percent Used bit set to ‘1’ in their Controller Health Status Changed Flags.

NVM ExpressTM Management Interface Revision 1.1b

78

Figure 75: Controller Health Status Poll – NVMe Management Dword 1

Bit Description

01
Composite Temperature Changes (CTEMP): When this bit is set to ‘1’, a Controller Health Data
Structure is returned for Controllers with the Composite Temperature bit set to ‘1’ in their Controller
Health Status Changed Flags.

00

Controller Status Changes (CSTS): When this bit is set to ‘1’, a Controller Health Data Structure is
returned for Controllers with the Ready, Controller Fatal Status, Shutdown Status, NVM Subsystem
Reset Occurred, Controller Enable Change Occurred, Namespace Attribute Changed, or Firmware
Activated bit set to ‘1’ in their Controller Health Status Changed Flags.

The Controller Health Status Poll Response Messages use the NVMe Management Response field with
the format shown in Figure 76.

The Response Data field size may vary based on the number of Controllers whose Controller Health Data
Structure has changed and based on the number of Controllers whose Controller Health Data Structure is
filtered out by Controller type (refer to section 5.3.1) or Controller Health Status Changed Flags (refer to
section 5.3.2). The Response Entries field indicates the number of Controller Health Data Structures that
are contained in the Response Data.

Figure 76: Controller Health Status Poll – NVMe Management Response

Bit Description

23:16
Response Entries (RENT): This field specifies the number of Controller Health Data Structure Entries
present in the Response Data for this Response Message.

15:00 Reserved

The Controller Health Data Structure, shown in Figure 77, contains the health status attributes that are
tracked for each Controller. When the command is processed without error, health status is returned for up
to 255 Controllers starting at or above the Starting Controller ID (SCTLID). Controllers are returned in
ascending order of Controller Identifier starting at offset 0h of the Response Data.

Figure 77: Controller Health Data Structure (CHDS)

Bytes Description

01:00
Controller Identifier (CTLID): This field specifies the Controller Identifier with which the data contained in
this data structure is associated.

NVM ExpressTM Management Interface Revision 1.1b

79

Figure 77: Controller Health Data Structure (CHDS)

Bytes Description

03:02

Controller Status (CSTS): This field reports the Controller status.

Bit Reset Description

15:08 0 Reserved

07 HwInit

Firmware Activated (FA): This bit is set to ‘1’ when a new firmware
image is activated. Firmware activation is described in the NVM
Express specification.

The reset value of this bit is set to ‘1’ if a reset caused a new
firmware image to be activated.

06 0

Namespace Attribute Changed (NAC): This bit is set to ‘1’ under
the same conditions that causes the Namespace Attribute Changed
asynchronous event to be sent if Namespace Attribute Notices are
enabled as specified in the NVM Express specification. This bit may
be set to ‘1’ regardless of whether Namespace Attribute Notices are
enabled or not.

05 0
Controller Enable Change Occurred (CECO): This bit is set to ‘1’
when the Enable bit (refer to CC.EN in the NVM Express
specification) changes state.

04 HwInit
NVM Subsystem Reset Occurred (NSSRO): This bit corresponds to
the value of the NVM Subsystem Reset Occurred (refer to
CSTS.NSSRO in the NVM Express specification) bit.

03:02 0
Shutdown Status (SHST): This field corresponds to the value of the
Shutdown Status (refer to CSTS.SHST in the NVM Express
specification) field.

01 HwInit
Controller Fatal Status (CFS): This bit corresponds to the value of
the Controller Fatal Status (refer to CSTS.CFS in the NVM Express
specification) bit.

00 0
Ready (RDY): This bit corresponds to the value of the Ready (refer
to CSTS.RDY in the NVM Express specification) bit.

05:04

Composite Temperature (CTEMP): This field contains a value corresponding to a temperature in degrees
Kelvin that represents the current composite temperature of the Controller and namespace(s) associated
with that Controller. The value of this field corresponds to the value in the Controller’s SMART / Health
Information Log.

06
Percentage Used (PDLU): This field contains a vendor specific estimate of the percentage of NVM
Subsystem life used based on the actual usage and the manufacturer’s prediction of NVM life. The value of
this field corresponds to the value in the Controller’s SMART / Health Information Log.

07
Available Spare (SPARE): This field contains a normalized percentage (0% to 100%) of the remaining
spare capacity available. The value of this field corresponds to the value in the Controller’s SMART / Health
Information Log.

08

Critical Warning (CWARN): This field indicates critical warnings for the state of the Controller. The value
of this field corresponds to the value in the Controller’s SMART / Health Information Log.

Bit Description

7:5 Reserved

4
Volatile Memory Backup Failed (VMBF): This bit is set to ‘1’ when the volatile memory
backup device has failed.

3 Read Only (RO): This bit is set to ‘1’ when the media has been placed in read only mode.

2
Reliability Degraded (RD): This bit is set to ‘1’ when NVM Subsystem reliability has been
degraded due to significant media related errors or an internal error.

1
Temperature Above or Under Threshold (TAUT): This bit is set to ‘1’ when a temperature
is above an over temperature threshold or below an under-temperature threshold.

0
Spare Threshold (ST): This bit is set to ‘1’ when the available spare has fallen below the
available spare threshold.

15:09 Reserved

NVM ExpressTM Management Interface Revision 1.1b

80

Associated with each Controller in the NVM Subsystem is a set of Controller Health Status Changed Flags
shown in Figure 78. The Controller Health Status Changed Flags are set when the corresponding field in
the Controller Health Data Structure changes state as described in Figure 78. Figure 79 shows a graphical
representation of which field(s)/bit(s) in the Controller Health Data Structure are associated with each bit in
the Controller Health Status Changed Flags. When a bit in the Controller Health Status Changed Flags for
any Controller transitions from ‘0’ to ‘1’, then the corresponding bit in the Composite Controller Status is
also set to ‘1’. The Controller Health Status Changed Flags are cleared in Controllers whose Controller
Health Data Structure is returned in the Success Response to a Controller Health Status Poll Command
Message with the Clear Changed Flags bit set to ‘1’.

A Controller Health Status Poll response may return the Controller Health Data Structure for up to 255
Controllers in the Response Data field. An NVM Subsystem may contain up to 64 Ki Controllers, so a
method is needed to limit the size of the Response Message. The Starting Controller ID field in the
Command Message specifies the Controller ID of the first Controller whose Controller Health Data Structure
may be returned in the Response Data field. The Maximum Response Entries field specifies the maximum
number of Controllers whose Controller Health Data Structure may be returned in the Response Data field.

The Response Data field contains the Controller Health Status Data Structure for up to the first M
Controllers starting with Controller N, where M is equal to the Maximum Response Entries field and N is
equal to the Starting Controller ID field. The Response Data field shall contain the Controller Health Status
Data Structure for all Controllers that do not match the filtering criteria in Controller Health Status Poll -
NVMe Management Dword 0 (refer to section 5.3.1) and that have one or more Controller Health Status
Changed Flags that are: a) set and b) do not match the filtering criteria in Controller Health Status Poll -
NVMe Management Dword 1 (refer to section 5.3.2). The Response Data field shall not contain the
Controller Health Status Data Structure for any Controllers that meet the filtering criteria in sections 5.3.1
or 5.3.2.

5.3.1 Filtering by Controller Type

The Controller Health Data Structures that are returned by Controller Health Status Poll may be filtered
(i.e., excluded from being included in the Response Data field regardless of the state of the Controller
Health Status Changed Flags) by Controller type (i.e., non SR-IOV PCI Function, SR-IOV PF, and SR-IOV
VF). Controller type filtering is controlled by the Include PCI Functions, Include SR-IOV PFs, and Include
SR-IOV VFs fields in NVMe Management Dword 0. When one of these bits is set to ‘1’, Controller Health
Data Structures for Controllers corresponding to that type of PCI Function are included in the Response
Data field; else, the Controller Health Data Structure for that Controller is excluded from the Response Data
field.

5.3.2 Filtering by Controller Health Status Changed Flags

The Controller Health Data Structures that are returned by Controller Health Status Poll may also be filtered
by the Controller Health Status Changed Flags. Filtering of changes by Controller Health Status Changed
Flags is controlled by some of the bits in NVMe Management Dword 1. When one or more of these bits is
set and any of the corresponding bit(s) in the Controller Health Status Changed Flags for the Controller are
also set (refer to Figure 75 for Controller Health Status Changed Flags associated with each bit in NVMe
Management Dword 1), then the entire Controller Health Data Structure (including any filtered fields) for
that Controller is returned in the Response Data field; else, the Controller Health Data Structure for that
Controller is excluded from the Response Data field. The contents returned in the Controller Health Data
Structure for filtered fields are undefined.

NVM ExpressTM Management Interface Revision 1.1b

81

Figure 78: Controller Health Status Changed Flags (CHSCF)

Bit Reset Description

15:13 0 Reserved

12 0
Critical Warning (CWARN): This bit is set to ‘1’ when any of the Critical Warning bits in the
Controller Health Data Structure transition from ‘0’ to ‘1’.

11 0
Available Spare (SPARE): This bit is set to ‘1’ when the Available Spare field in the
Controller Health Data Structure changes state.

10 0
Percentage Used (PDLU): This bit is set to ‘1’ when the Percentage Used field in the
Controller Health Data Structure changes state.

09 0
Composite Temperature Change (CTEMP): This bit is set to ‘1’ when the Composite
Temperature field in the Controller Health Data Structure changes state.

08 HwInit

Controller Status Change (CSTS): This bit is set to ‘1’ when the Shutdown Status field in
the Controller Health Data Structure changes state or when the Ready, Controller Fatal
Status, NVM Subsystem Reset Occurred, Controller Enable Change Occurred, Namespace
Attribute Changed, or Firmware Activated bit in the Controller Health Data Structure
transitions from ‘0’ to ‘1’.

07 HwInit
Firmware Activated (FA): This bit is set to ‘1’ when the Firmware Activated bit in the
Controller Health Data Structure transitions from ‘0’ to ‘1’.

06 0
Namespace Attribute Changed (NAC): This bit is set to ‘1’ when the Namespace Attribute
Changed bit in the Controller Health Data Structure transitions from ‘0’ to ‘1’.

05 0
Controller Enable Change Occurred (CECO): This bit is set to ‘1’ when the Controller
Enable Change Occurred bit in the Controller Health Data Structure transitions from ‘0’ to ‘1’.

04 HwInit
NVM Subsystem Reset Occurred (NSSRO): This bit is set to ‘1’ when the NVM Subsystem
Reset Occurred bit in the Controller Health Data Structure transitions from ‘0’ to ‘1’.

03 0 Reserved

02 0
Shutdown Status (SHST): This bit is set to ‘1’ when the Shutdown Status field in the
Controller Health Data Structure changes state.

01 HwInit
Controller Fatal Status (CFS): This bit is set to ‘1’ when the Controller Fatal Status bit in
the Controller Health Data Structure transitions from ‘0’ to ‘1’.

00 0
Ready (RDY): This bit is set to ‘1’ when the Ready bit in the Controller Health Data Structure
transitions from ‘0’ to ‘1’.

NVM ExpressTM Management Interface Revision 1.1b

82

Figure 79: Controller Health Data Structure to Controller Health Status Changed Flags Mapping

NAC
Bit 6

FA
Bit 7

CTEMP

Bits
15:0

PDLU
Bits
7:0

ST
Bit 0

Controller Health
Data Structure

(CHDS)
16 Bytes

Rsvd
Bits
15:8

Controller Status
(CSTS)

Bytes 3:2

Critical Warning
(CWARN)

Byte 8

TAUT
Bit 1

RD
Bit 2

RO
Bit 3

VMBF
Bit 4

Rsvd
Bits
7:5

SPARE
Bits
7:0

Controller Health
Status Changed Flags

(CHSCF)
2 Bytes

RDY
Bit 0

CFS
Bit 1

SHST
Bit 2

NSSRO
Bit 4

CECO
Bit 5

NAC
Bit 6

FA
Bit 7

CTEMP
Bit 9

PDLU
Bit 10

CWARN
Bit 12

CSTS
Bit 8

SPARE
Bit 11

Rsvd

Available Spare
(SPARE)
Byte 7

Percent Used
PDLU
Byte 6

Composite Temp
(CTEMP)
Bytes 5:4

CTLID
Bytes 1:0

Rsvd
Bits

15:13

Reserved
Bytes 15:9

NSSRO

Bit 4

CTLID
Bits

15:0

Rsvd
Bit 3

CECO

Bit 5

RDY
Bit 0

CFS
Bit 1

SHST
Bits
3:2

NVM ExpressTM Management Interface Revision 1.1b

83

5.4 Management Endpoint Buffer Read

The Management Endpoint Buffer Read command allows the Management Controller to read the contents
of the Management Endpoint Buffer. This data is returned in the Response Data.

The command uses NVMe Management Dwords 0 and 1. The format of NVMe Management Dwords 0 and
1 are shown in Figure 81 and Figure 82 respectively. There is no Request Data included in a Management
Endpoint Buffer Read command. The NVMe Management Response field is reserved.

Figure 80: Management Endpoint Buffer Read Response Data

Skipped
Data

Management

Endpoint Buffer

Response
Data

Response Data

Data Offset

(DOFST)

Data Length

(DLEN)

Skipped
Data

< Byte 0

If the Data Offset (DOFST) field is greater than or equal to the size of the Management Endpoint Buffer,
then the Management Endpoint responds with an Invalid Parameter Error Response. The parameter with
the error in this case is the DOFST field. If the DOFST field is less than the size of the Management Endpoint
Buffer and the sum of the DOFST and DLEN fields is greater than or equal to size of the Management
Endpoint Buffer, then the Management Endpoint responds with an Invalid Parameter Error Response. The
parameter with the error in this case is the DLEN field.

When an attempt is made to read Management Endpoint Buffer contents that were zeroed due to a sanitize
operation, then the Management Endpoint responds with a Response Message Status of Management
Endpoint Buffer Cleared Due to Sanitize.

Figure 81: Management Endpoint Buffer Read – NVMe Management Dword 0

Bit Description

31:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the Management
Endpoint Buffer.

Figure 82: Management Endpoint Buffer Read – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00

Data Length (DLEN): This field specifies the length, in bytes, to be transferred from the
Management Endpoint Buffer starting at the byte offset specified by DOFST and returned in the
Response Data. Specifying a DLEN field value that is greater than the maximum supported
Response Data size results in an Invalid Parameter Error Response.

A Data Length value of 0h and no data is valid. The Management Endpoint responds with a
Success Response and no Response Data.

NVM ExpressTM Management Interface Revision 1.1b

84

5.5 Management Endpoint Buffer Write

The Management Endpoint Buffer Write command allows the Management Controller to update the
contents of the optional Management Endpoint Buffer. The data used to update the Management Endpoint
Buffer is transferred in the Request Data included in a Management Endpoint Buffer Write command.

The command uses NVMe Management Dwords 0 and 1. The format of the NVMe Management Dwords 0
and 1 are shown in Figure 84 and Figure 85 respectively. The NVMe Management Response field is
reserved and there is no Response Data.

Figure 83: Management Endpoint Buffer Write Request Data

Skipped
Data

Management Endpoint Buffer

Request
Data

Request Data

Data Offset

(DOFST)

Data Length

(DLEN)

Skipped
Data

< Byte 0

If the Data Offset (DOFST) field is greater than or equal to the size of the Management Endpoint Buffer,
then the Management Endpoint responds with an Invalid Parameter Error Response. The parameter with
the error in this case is the DOFST field. If the DOFST field is less than the size of the Management Endpoint
Buffer and the sum of the DOFST and DLEN fields is greater than or equal to size of the Management
Endpoint Buffer, then the Management Endpoint responds with an Invalid Parameter Error Response. The
parameter with the error in this case is the DLEN field.

Figure 84: Management Endpoint Buffer Write – NVMe Management Dword 0

Bit Description

31:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the Management
Endpoint Buffer.

Figure 85: Management Endpoint Buffer Write – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00

Data Length (DLEN): This field specifies the length, in bytes, to be transferred from the Request
Data to the Management Endpoint Buffer starting at the byte offset specified by DOFST.
Specifying a DLEN field value that is greater than the maximum supported Response Data size
results in an Invalid Parameter Error Response.

A Data Length value of 0h specifies that no data shall be transferred. This condition shall not be
considered an error.

NVM ExpressTM Management Interface Revision 1.1b

85

5.6 NVM Subsystem Health Status Poll

The NVM Subsystem Health Status Poll command is used to efficiently determine changes in health status
attributes associated with the NVM Subsystem.

The NVM Subsystem Health Status Poll command operates independently in the out-of-band mechanism
and the in-band tunneling mechanism.

An NVMe Storage Device or NVMe Enclosure supporting the NVM Subsystem Health Status Poll command
in the out-of-band mechanism shall have an independent copy of the NVM Subsystem Health Data
Structure (refer to Figure 87) dedicated to the out-of-band mechanism. In the out-of-band mechanism, an
NVM Subsystem Health Status Poll command only applies to the copy of the NVM Subsystem Health Data
Structure dedicated to the out-of-band mechanism.

An NVMe Storage Device or NVMe Enclosure supporting the NVM Subsystem Health Status Poll command
in the in-band tunneling mechanism shall have an independent copy of the NVM Subsystem Health Data
Structure dedicated to the in-band tunneling mechanism. In the in-band tunneling mechanism, an NVM
Subsystem Health Status Poll command only applies to the copy of the NVM Subsystem Health Data
Structure dedicated to the in-band tunneling mechanism.

The NVM Subsystem Health Status Poll command uses NVMe Management Dword 1 as shown in Figure
86.

Figure 86: NVM Subsystem Health Status Poll - NVMe Management Dword 1

Bit Description

31
Clear Status (CS): When this bit is set to ‘1’, the state of reported Composite Controller
Status is cleared.

30:00 Reserved

All other command specific fields are reserved.

The NVM Subsystem Health Data Structure, shown in Figure 87, is returned in the Response Data of a
Successful Response Message. NVM Subsystem Health Status Poll Command responses do not use the
NVMe Management Response field and this field is reserved. The Response Data field contains the NVM
Subsystem Health Data Structure and is always the size of the NVM Subsystem Health Data Structure.

NVM ExpressTM Management Interface Revision 1.1b

86

Figure 87: NVM Subsystem Health Data Structure (NSHDS)

Byte Description

0

NVM Subsystem Status (NSS): This field indicates the status of the NVM Subsystem.

Bit Description

7:6 Reserved

5
Drive Functional (DF): This bit is set to ‘1’ to indicate an NVM Subsystem is
functional. If cleared to ‘0’, then there is an unrecoverable failure detected in the
NVM Subsystem.

4

Reset Not Required (RNR): This bit is set to ‘1’ to indicate the NVM Subsystem
does not need a reset to resume normal operation. If cleared to ‘0’, then the NVM
Subsystem has experienced an error that prevents continued normal operation. A
Controller Level Reset is required to resume normal operation.

3
Port 0 PCIe Link Active (P0LA): This bit is set to ‘1’ to indicate the first port’s PCIe
link is up (i.e., the Data Link Control and Management State Machine is in the
DL_Active state). If cleared to ‘0’, then the PCIe link is down.

2
Port 1 PCIe Link Active (P1LA): This bit is set to ‘1’ to indicate the second port’s
PCIe link is up. If cleared to ‘0’, then the second port’s PCIe link is down or not
present.

1:0 Reserved

1

Smart Warnings (SW): This field contains the Critical Warning field (byte 0) of the NVMe SMART / Health
Information log. Each bit in this field is inverted from the NVM Express specification definition (i.e., the
management interface shall indicate a ‘0’ value while the corresponding bit is set to ‘1’ in the log page).
Refer to the NVM Express specification for bit definitions.

If there are multiple Controllers in the NVM Subsystem, the Responder shall combine the Critical Warning
field from every Controller in the NVM Subsystem such that a bit in this field is:

• Cleared to ‘0’ if any Controller in the NVM Subsystem indicates a critical warning for that
corresponding bit; or

• Set to ‘1’ if all Controllers in the NVM Subsystem do not indicate a critical warning for the
corresponding bit.

2

Composite Temperature (CTEMP): This field indicates the current temperature in degrees Celsius. If a
temperature value is reported, it should be the same temperature as the Composite Temperature from the
SMART log of hottest Controller in the NVM Subsystem. The reported temperature range is vendor specific
and shall not exceed the range -60 °C to +127 °C. The 8-bit format of the data is shown below.

This field should not report a temperature that is older than 1 s. If recent data is not available, the
Responder should indicate a value of 80h for this field.

Value Description

00h to 7Eh Temperature is measured in degrees Celsius (0 °C to 126 °C)

7Fh 127 °C or higher

80h No temperature data or temperature data is more the 5 s old.

81h Temperature sensor failure

82h to C3h Reserved

C4h Temperature is -60 °C or lower

C5h to FFh
Temperature measured in degrees Celsius is represented in two’s complement
(-1 °C to -59 °C)

3

Percentage Drive Life Used (PDLU): Contains a vendor specific estimate of the percentage of NVM
Subsystem NVM life used based on the actual usage and the manufacturer’s prediction of NVM life. If an
NVM Subsystem has multiple Controllers, the highest value is returned. A value of 100 indicates that the
estimated endurance of the NVM in the NVM Subsystem has been consumed but may not indicate an
NVM Subsystem failure. The value is allowed to exceed 100. Percentages greater than 254 shall be
represented as 255. This value should be updated once per power-on hour and equal the Percentage
Used value in the NVMe SMART Health Log Page.

NVM ExpressTM Management Interface Revision 1.1b

87

Figure 87: NVM Subsystem Health Data Structure (NSHDS)

Byte Description

5:4

Composite Controller Status (CCS): This field reports the composite status of all Controllers in the NVM
Subsystem.

The bits in this field are cleared after the NVM Subsystem Health Data Structure (refer to Figure 87) is
returned in a Success Response associated with an NVM Subsystem Health Status Poll command where
the Clear Status bit set. A Configuration Set command that selects Health Status Change may be used to
clear selected bits to ‘0’.

Bit Reset Description

15:13 0 Reserved

12 0
Critical Warning (CWARN): This bit is set to ‘1’ when the Critical Warning
bit in the Controller Health Status Changed Flags transitions from ‘0’ to ‘1’
in one or more Controllers in the NVM Subsystem.

11 0
Available Spare (SPARE): This bit is set to ‘1’ when the Available Spare
bit in the Controller Health Status Changed Flags transitions from ‘0’ to ‘1’
in one or more Controllers in the NVM Subsystem.

10 0
Percentage Used (PDLU): This bit is set to ‘1’ when the Percentage Used
field in the Controller Health Status Changed Flags transitions from ‘0’ to
‘1’ in one or more Controllers in the NVM Subsystem.

09 0

Composite Temperature Change (CTEMP): This bit is set to ‘1’ when the
Composite Temperature field in the Controller Health Status Changed
Flags transitions from ‘0’ to ‘1’ in one or more Controllers in the NVM
Subsystem.

08 HwInit
Controller Status Change (CSTS): This bit is set to ‘1’ when the Controller
Status field in the Controller Health Status Changed Flags transitions from
‘0’ to ‘1’ in one or more Controllers in the NVM Subsystem.

07 HwInit
Firmware Activated (FA): This bit is set to ‘1’ when the Firmware Activated
bit in the Controller Health Status Changed Flags transitions from ‘0’ to ‘1’
in one or more Controllers in the NVM Subsystem.

06 0

Namespace Attribute Changed (NAC): This bit is set to ‘1’ when the
Namespace Attribute Changed bit in the Controller Health Status Changed
Flags transitions from ‘0’ to ‘1’ in one or more Controllers in the NVM
Subsystem.

05 0

Controller Enable Change Occurred (CECO): This bit is set to ‘1’ when
the Controller Enable Change Occurred bit in the Controller Health Status
Changed Flags transitions from ‘0’ to ‘1’ in one or more Controllers in the
NVM Subsystem.

04 HwInit

NVM Subsystem Reset Occurred (NSSRO): This bit is set to ‘1’ when the
value of the NVM Subsystem Reset Occurred (CSTS.NSSRO) bit
transitions from a ‘0’ to a ‘1’ in one or more Controllers in the NVM
Subsystem.

03 0 Reserved

02 0
Shutdown Status (SHST): This bit is set to ‘1’ when the Shutdown Status
bit in the Controller Health Status Changed Flags transitions from ‘0’ to ‘1’
in one or more Controllers in the NVM Subsystem.

01 HwInit
Controller Fatal Status (CFS): This bit is set to ‘1’ when the Controller
Fatal Status bit in the Controller Health Status Changed Flags transitions
from ‘0’ to ‘1’ in one or more Controllers in the NVM Subsystem.

00 0
Ready (RDY): This bit is set to ‘1’ when the Ready bit in the Controller
Health Status Changed Flags transitions from ‘0’ to ‘1’ in one or more
Controllers in the NVM Subsystem.

7:6 Reserved

NVM ExpressTM Management Interface Revision 1.1b

88

5.7 Read NVMe-MI Data Structure

The Read NVMe-MI Data Structure command requests data that describes information about the NVM
Subsystem, the Management Endpoint, or the NVMe Controllers.

The command uses NVMe Management Dword 0. The format of NVMe Management Dword 0 is shown in
Figure 88. NVMe Management Dword 1 is reserved. There is no Request Data included in a Read NVMe-
MI Data Structure command.

Figure 88: Read NVMe-MI Data Structure – NVMe Management Dword 0

Bit Description

31:24

Data Structure Type (DTYP): This field specifies the data structure to return.

Value Definition

00h NVM Subsystem Information

01h Port Information

02h Controller List

03h Controller Information

04h Optionally Supported Command List

05h Management Endpoint Buffer Command Support List

06h to FFh Reserved

23:16

Port Identifier (PORTID): This field contains the identifier of the port whose data structure is returned.

If the DTYP field value corresponds to Port Information, then this field contains the Port Identifier whose
information is requested.

If the DTYP field value corresponds to Management Endpoint Buffer Command Support List, then this field
contains the Port Identifier whose information is requested.

For all other values of the DTYP field, this field is reserved.

15:00

Controller Identifier (CTRLID): This field contains the Controller Identifier whose data structure is returned.

If the DTYP field value is 02h (Controller List), 03h (Controller Information), or 04h (Optionally Supported
Command List), then this field contains the Controller Identifier in the NVM Subsystem whose information is
requested.

If the DTYP field value is 04h (Optionally Supported Command List), then this field is only applicable for
commands in the Optionally Supported Command List Data Structure with NMIMT set to a value of 02h (NVMe
Admin Command) and shall be ignored for commands with NMIMT set to any value other than 02h.

For all other values of the DTYP field, this field is reserved.

Upon successful completion of the Read NVMe-MI Data Structure, the NVMe Management Response field
is shown in Figure 89 and the specified data structure is returned in the Response Data.

Figure 89: Read NVMe-MI Data Structure – NVMe Management Response

Bit Description

23:16 Reserved

15:00
Response Data Length: The length, in bytes, of the Response Data field in this
Response Message.

The NVM Subsystem Information data structure contains information about the NVM Subsystem. The Port
Identifier and Controller Identifier fields are reserved. The format is shown in Figure 90.

NVM ExpressTM Management Interface Revision 1.1b

89

Figure 90: NVM Subsystem Information Data Structure

Byte Description

00
Number of Ports (NUMP): This field specifies the maximum number of ports of any type supported by the
NVM Subsystem. This is a 0’s based value.

01
NVMe-MI Major Version Number (MJR): This field shall be set to 1h to indicate the major version number
of this specification.

02
NVMe-MI Minor Version Number (MNR): This field shall be set to 1h to indicate the minor version number
of this specification.

31:03 Reserved

The Port Information data structure contains information about a port within the NVM Subsystem. The Port
Identifier specifies the port. The Controller Identifier fields are reserved. The format is shown in Figure 91.

Figure 91: Port Information Data Structure

Byte Description

00

Port Type: Specifies the port type.

Value Definition

0h Inactive

1h PCIe

2h SMBus

3h to FFh Reserved

01 Reserved

03:02

Maximum MCTP Transmission Unit Size: The maximum MCTP Transmission Unit size the port is capable
of sending and receiving.

If the port does not support MCTP, then this field shall be cleared to 0h.

If the Port Type is PCIe and the port supports MCTP, then this field shall be set to a value between 64 bytes
and the PCIe Max Payload Size Supported (refer to the PCI Express Base Specification), inclusive. All PCIe
ports within an NVM Subsystem should report the same value in this field.

If the Port Type is SMBus and the port supports MCTP, then this field shall be set to a value between 64
bytes and 250 bytes, inclusive.

07:04

This field specifies the size of the Management Endpoint Buffer in bytes when a Management Endpoint
Buffer is supported.

A value of 0h in this field indicates that the Management Endpoint does not support a Management Endpoint
Buffer.

31:08 Port Type Specific (refer to Figure 92 and Figure 93)

NVM ExpressTM Management Interface Revision 1.1b

90

Figure 92: PCIe Port Specific Data

Byte Description

08

PCIe Maximum Payload Size: This field indicates the Max Payload Size for the specified PCIe port. If the link is
not active, this field should be cleared to 0h.

Value Definition

0h 128 bytes

1h 256 bytes

2h 512 bytes

3h 1 KiB

4h 2 KiB

5h 4 KiB

6h to FFh Reserved

09

PCIe Supported Link Speeds Vector: This field indicates the Supported Link Speeds for the specified PCIe port.

Bit Description

7:4 Reserved

3 This bit shall be set to ‘1’ if the link supports 16.0 GT/s.

2 This bit shall be set to ‘1’ if the link supports 8.0 GT/s.

1 This bit shall be set to ‘1’ if the link supports 5.0 GT/s.

0 This bit shall be set to ‘1’ if the link supports 2.5 GT/s.

10

PCIe Current Link Speed: The port’s PCIe negotiated link speed using the same encoding as the PCIe Supported
Link Speed Vector field. A value of 0h in this field indicates the PCIe Link is not available.

Value Definition

0h Link not active

1h The current link speed is the speed indicated in the supported link speed bit 0.

2h The current link speed is the speed indicated in the supported link speed bit 1.

3h The current link speed is the speed indicated in the supported link speed bit 2.

4h The current link speed is the speed indicated in the supported link speed bit 3.

5h The current link speed is the speed indicated in the supported link speed bit 4.

6h The current link speed is the speed indicated in the supported link speed bit 5.

7h The current link speed is the speed indicated in the supported link speed bit 6.

8h to FFh Reserved

NVM ExpressTM Management Interface Revision 1.1b

91

Figure 92: PCIe Port Specific Data

Byte Description

11

PCIe Maximum Link Width: The maximum PCIe link width for this NVM Subsystem port. This is the expected
negotiated link width that the port link trains to if the platform supports it. A Requester may compare this value with
the PCIe Negotiated Link Width to determine if there has been a PCIe link training issue.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

12

PCIe Negotiated Link Width: The negotiated PCIe link width for this port.

Value Definition

0 Link not active

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

13
PCIe Port Number: This field contains the PCIe port number. This is the same value as that reported in the Port
Number field in the PCIe Link Capabilities Register.

31:14 Reserved

Figure 93: SMBus Port Specific Data

Byte Description

08
Current VPD SMBus/I2C Address: This field indicates the current VPD SMBus/I2C address. A value of 0h
indicates there is no VPD.

NVM ExpressTM Management Interface Revision 1.1b

92

Figure 93: SMBus Port Specific Data

Byte Description

09

Maximum VPD Access SMBus/I2C Frequency: This field indicates the maximum SMBus/I2C frequency
supported on the VPD interface.

Value Definition

0h Not supported

1h 100 kHz

2h 400 kHz

3h 1 MHz

4h to FFh Reserved

10
Current Management Endpoint SMBus/I2C Address: This field indicates the current MCTP SMBus/I2C
address. A value of 0h indicates there is no Management Endpoint on this port.

11

Maximum Management Endpoint SMBus/I2C Frequency: This field indicates the maximum SMBus/I2C
frequency supported by the Management Endpoint.

Value Definition

0h Not supported

1h 100 kHz

2h 400 kHz

3h 1 MHz

4h to FFh Reserved

12

NVMe Basic Management: If bit 0 in this field is set to ‘1’, then the port implements the NVMe Basic
Management Command. If bit 0 in this field is cleared to ‘0’, then the port does not implement the NVMe
Basic Management Command. It is strongly recommended that implementations clear this bit to ‘0’. The
NVMe Basic Management Command is included in Appendix A for information purposes only and is not a
part of the standard NVMe-MI protocol. All other bits in this field are reserved.

31:13 Reserved

The Controller List data structure contains a list of NVMe Controllers in the NVM Subsystem greater than
or equal to the value specified in the Controller Identifier (CTRLID) field. A Controller List may contain up
to 2,047 Controller identifiers. Refer to the NVM Express specification for a definition of the Controller List.

Figure 94: Controller Information Data Structure

Byte Description

00
Port Identifier (PORTID): This field specifies the PCIe Port Identifier with which the Controller is
associated.

04:01 Reserved

05

PCIe Routing ID Information (PRII): This field provides additional data about the PCI Express
Routing ID (PRI) for the specified Controller.

Bit Description

7:1 Reserved

0

PCIe Routing ID Valid: This bit is set to ‘1’ if the device has captured a Bus
Number and Device Number (Bus Number only for ARI devices). This bit is
cleared to ‘0’ if the device has not captured a Bus and Device number (Bus
Number only for ARI devices).

NVM ExpressTM Management Interface Revision 1.1b

93

Figure 94: Controller Information Data Structure

Byte Description

07:06

PCIe Routing ID (PRI): This field contains the PCIe Routing ID for the specified Controller.

Bit Description

15:08 PCI Bus Number: The Controller’s PCI Bus Number.

07:03 PCI Device Number: The Controller’s PCI Device Number.

02:00 PCI Function Number: The Controller’s PCI Function Number.

Note: For an ARI Device, bits 7:0 represents the (8-bit) Function Number, which replaces the (5-bit)
Device Number and (3-bit) Function Number fields above.

09:08 PCI Vendor ID: The PCI Vendor ID for the specified Controller.

11:10 PCI Device ID: The PCI Device ID for the specified Controller.

13:12 PCI Subsystem Vendor ID: The PCI Subsystem Vendor ID for the specified Controller.

15:14 PCI Subsystem Device ID: The PCI Subsystem Device ID for the specified Controller.

31:16 Reserved

The Optionally Supported Command List data structure contains a list of optional commands that a
Responder supports. The Optionally Supported Command List data structure may contain up to 2,047
commands, and shall be minimally sized (i.e., if there is one optionally supported command, the data
structure is 4 bytes total).

Figure 95: Optionally Supported Command List Data Structure

Byte Description

01:00
Number of Commands (NUMCMD): This field contains the number of optionally supported
commands in the list. A value of 0h indicates there are no commands in the list.

03:02
Command 0 (CMD0): This field contains the Command Type and Opcode for the first optionally
supported command or 0h if the list is empty (i.e., no optional commands are supported). Refer to
Figure 96.

05:04
Command 1 (CMD1): This field contains the Command Type and Opcode for the second optionally
supported command, if applicable. Refer to Figure 96.

…

(N*2 +3):
(N*2 + 2)

Command N (CMDN): This field contains the Command Type and Opcode for the N+1 optionally
supported command, if applicable. Refer to Figure 96.

Figure 96: Optionally Supported Command Data Structure

Byte Description

00

Command Type: This field specifies the command set used by the optionally supported command.

Bits Description

7 Reserved

6:3
NVMe-MI Message Type (NMIMT): This field specifies the
NVMe-MI Message Type. Refer to Figure 18.

2:0 Reserved

01 Opcode: This field specifies the opcode used for the optionally supported command.

If the Management Endpoint Buffer Size field in the Port Information Data Structure is not 0h, then returning
of the Management Endpoint Buffer Command Support List data structure shall be supported by the
Management Endpoint. If the Management Endpoint Buffer Size field in the Port Information Data Structure

NVM ExpressTM Management Interface Revision 1.1b

94

is 0h, then the Data Structure Type value for Management Endpoint Buffer Command Support List is
reserved.

The Management Endpoint Buffer Command Support List data structure contains a list of commands that
support the use of the Management Endpoint Buffer. The data structure may contain up to 2,047
commands, and shall be minimally sized (i.e., if there is 1 optionally supported command, the data structure
is 4 bytes total).

The list of commands that support the Management Endpoint Buffer may be different among Management
Endpoints within the NVM Subsystem. The Port Identifier (PORTID) field in NVMe Management Dword 0
of the Read NVMe-MI Data Structure specifies the port of the Management Endpoint whose Management
Endpoint Buffer Command Support List data structure is returned.

Figure 97: Management Endpoint Buffer Supported Command List Data Structure

Byte Description

01:00
Number of Commands (NUMCMD): This field contains the number of commands in the list. A
value of 0h indicates there are no commands in the list.

03:02
Command 0 (CMD0): This field contains the Management Endpoint Buffer Supported Command
Data Structure (refer to Figure 98) for the first command that supports the use of the Management
Endpoint Buffer associated with the Management Endpoint.

05:04
Command 1 (CMD1): This field contains the Management Endpoint Buffer Supported Command
Data Structure (refer to Figure 98) for the second command that supports the use of the
Management Endpoint Buffer associated with the Management Endpoint.

…

(N*2 + 3):
(N*2 + 2)

Command N (CMDN): This field contains the Management Endpoint Buffer Supported Command
Data Structure (refer to Figure 98) for the N+1 command that supports the use of the Management
Endpoint Buffer associated with the Management Endpoint.

Figure 98: Management Endpoint Buffer Supported Command Data Structure

Byte Description

00

Command Type: This field specifies the command set that supports the Management Endpoint
Buffer.

Bits Description

7 Reserved

6:3
NVMe-MI Message Type (NMIMT): This field specifies the
NVMe-MI Message Type. Refer to Figure 18.

2:0 Reserved

01
Opcode: This field specifies the opcode of the command that supports the Management Endpoint
Buffer.

5.8 Reset

The Reset command may be used to initiate a reset.

The Reset command uses NVMe Management Dword 0. The format of NVMe Management Dword 0 is
shown in Figure 99. All other command specific fields in the Request Message and Response Message
are reserved.

NVM ExpressTM Management Interface Revision 1.1b

95

Figure 99: Reset - NVMe Management Dword 0

Bit Description

31:24

Reset Type: This field specifies the type of reset to be performed.

Value O/M
1
 Description

00h O/M
2

Reset NVM
Subsystem

01h to FFh - Reserved

23:00 Reserved

NOTES:
1. O/M definition: O = Optional, M = Mandatory
2. The Reset Type for Reset NVM Subsystem is required if the NVM Subsystem Reset feature

is supported in-band as defined in the NVM Express specification; else, it is optional.

When a Reset command is completed successfully, the NVM Subsystem Reset is immediately initiated
(refer to section 9.3). No Success Response is transmitted.

5.9 SES Receive

The SES Receive command is used to retrieve SES status type diagnostic pages. Upon successful
completion of the SES Receive command, the SES status type diagnostic page is returned in the Response
Data.

The SES Receive command uses NVMe Management Dwords 0 and 1. The format of NVMe Management
Dword 0 is shown in Figure 100 and the format of NVMe Management Dword 1 is shown in Figure 101.
There is no Request Data sent in the Request Message.

The Page Code (PCODE) field specifies the SES status type diagnostic page to be retrieved. Refer to SES-
3 for a list and description of SES diagnostic pages. If the PCODE field specifies a reserved value, an
unsupported value, or a value that only corresponds to an SES control type diagnostic page, then the
Responder responds with an Invalid Parameter Error Response.

The Allocation Length (ALENGTH) field specifies the maximum length of the Response Data field in the
Response Message and is used to limit the maximum amount of SES diagnostic page data that may be
returned. The length of the Response Data field shall be the total length of the SES diagnostic page
specified by the PCODE field or the number of bytes specified by the ALENGTH field (i.e., the SES
diagnostic page is truncated), whichever is less. When the SES diagnostic page is truncated, the value of
fields within the SES diagnostic page are not altered to reflect the truncation.

All errors are detected and reported while servicing the SES Receive command and reported via an Error
Response. If an invalid field is detected in an SES Receive command, then the Responder responds with
an Invalid Parameter Error Response. If a condition occurs that in SES-3 results in a CHECK CONDITION,
then the Responder responds with an Error Response. The mapping of Error Response Status values to
SES-3 sense keys and additional sense codes is shown in Figure 12.

If the SES Receive command is supported in the out-of-band mechanism, then the Management Endpoint
Buffer shall support the use of the Management Endpoint Buffer with SES Receive command and the size
of the Management Endpoint Buffer shall be greater than or equal to the maximum supported SES status
type diagnostic page. This allows a Requester to retrieve an SES status type diagnostic page whose size
exceed the maximum size allowed by one NVMe-MI Message.

The amount of data returned in the Response Data or transferred to the Management Endpoint Buffer is
dependent on the SES status diagnostic page that is returned. The Response Data Length field in the
NVMe Management Response contains the length of the Response Data.

NVM ExpressTM Management Interface Revision 1.1b

96

Figure 100: SES Receive – NVMe Management Dword 0

Bit Description

31:8 Reserved

07:00 Page Code (PCODE): This field specifies the SES status diagnostic page to be transferred.

Figure 101: SES Receive – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
Allocation Length (ALENGTH): This field specifies the maximum length in bytes of the Response
Data field in the Response Message.

Figure 102: SES Receive – NVMe Management Response

Bit Description

23:16 Reserved

15:00
Response Data Length (RDL): The length, in bytes, of the Response Data field in this Response
Message or transferred to the Management Endpoint Buffer.

5.10 SES Send

The SES Send command is used to transfer SES control type diagnostic pages to an SES Enclosure
Service Process. Upon successful completion of the SES Send command, the Request Data, containing
an SES control type diagnostic page, is transferred by the Request Message or to the Management
Endpoint Buffer.

Unlike the SES Receive command that specifies the page code of the SES status diagnostic page being
retrieved, the SES Send command specifies the page code of the SES control type diagnostic page that is
being transferred in the SES control type diagnostic page itself. Refer to SES-3 for a list and description of
SES control type diagnostic pages. If the page code in the SES control type diagnostic page specifies a
reserved value, an unsupported value, or a value that only corresponds to an SES status diagnostic page,
then the Responder responds with an Invalid Parameter Error Response.

The SES Send command does not use NVMe Management Dword 0 or the NVMe Management Response
field. All of these are reserved.

All errors are detected and reported while processing the SES Send command and reported via an Error
Response. If an invalid field is detected in the SES control type diagnostic page data transferred by an SES
Send command, then the Responder responds with an Invalid Parameter Error Response. If a condition
occurs that in SES-3 results in a CHECK CONDITION, then the Responder responds with an Error
Response. The mapping of Response Message Status values to SES-3 sense keys and additional sense
codes is shown in Figure 12.

The length in bytes of the Request Data field is specified in the Data Length (DLEN) field in NVMe
Management Dword 1. An SES Send command with DLEN equal to 0h and no data is valid, and results in
a Success Response. If the DLEN field specifies a value that is greater than PAGE LENGTH field in the
SES control type diagnostic page plus four, then the extra data in the Request Data field following the page
is ignored. If the DLEN field specifies a value that is less than PAGE LENGTH field in the SES control type
diagnostic page plus four, then the page is processed using the data contained in the Request Data field.

NVM ExpressTM Management Interface Revision 1.1b

97

If the SES Send command is supported in the out-of-band mechanism, then the Responder shall support
the use of the Management Endpoint Buffer with the SES Send command and the size of the Management
Endpoint Buffer shall be greater than or equal to the maximum supported SES control type diagnostic page.
This allows a Requester to transfer an SES control type diagnostic page whose size exceeds the maximum
size allowed by one NVMe-MI Message.

Figure 103: SES Send – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00 Data Length (DLEN): This field specifies the Request Data field in bytes.

5.11 VPD Read

The VPD Read command is used to read the Vital Product Data described in section 9.2. Upon successful
completion of the VPD Read command, the specified portion of the VPD contents is returned in the
Response Data.

The VPD Read command uses NVMe Management Dword 0 and 1. The format of NVMe Management
Dwords 0 and 1 are shown in Figure 104 and Figure 105 respectively. There is no Request Data sent in
the Request Message.

A VPD Read command with length 0 and no data is valid. The Responder responds with a Success
Response and no Response Data. If the Data Length plus Data Offset fields are greater than the size of
the VPD, then the Responder does not return the VPD contents and responds with an Invalid Parameter
Error Response.

Figure 104: VPD Read NVMe Management Dword 0

Bit Description

31:16 Reserved

15:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the VPD data that is contained
in the Response Message.

Figure 105: VPD Read NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
Data Length (DLEN): This field specifies the length, in bytes, to be read from the VPD starting at the byte
offset specified by DOFST.

NVM ExpressTM Management Interface Revision 1.1b

98

Figure 106: VPD Read Response Data

Skipped
Data

VPD contents

Response
Data

Response Data

Data Offset
(DOFST)

Data Length
(DLEN)

Skipped
Data

< Byte 0

5.12 VPD Write

The VPD Write command is used to update the Vital Product Data described in section 9.2.

After the VPD Write command has been processed without error, reading the contents of the FRU
Information Device directly or a VPD Read command processed without error shall return the new VPD
contents (i.e., those supplied with the VPD Write command). The data to be written to the VPD is specified
in the Request Data field. VPD Write uses NVMe Management Dwords 0 and 1 as shown in Figure 107
and Figure 108.

The VPD contents should be capable of being updated at least 8 times using the VPD Write command1. If
the initial value of the VPD Write Cycles Remaining field is less than 100, then the VPD Write Cycle
Remaining Valid bit should be set to ’1’ (Refer to the VPD Information field in Figure 136). If there is an
error preventing update of the VPD contents, then the Responder responds with a Generic Error Response
and VPD Writes Exceeded status.

A VPD Write command with Data Length 0h and no data is valid. The Responder responds with a Success
Response.

Figure 107: VPD Write – NVMe Management Dword 0

Bit Description

31:16 Reserved

15:00 Data Offset (DOFST): This field specifies the starting offset, in bytes, into the VPD data that is written.

1 NVM Express Management Interface Specification, Revision 1.0a and prior recommended that VPD
contents should be capable of being updated at least 100 times using the VPD Write command.

NVM ExpressTM Management Interface Revision 1.1b

99

Figure 108: VPD Write – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
Data Length (DLEN): This field specifies the length, in bytes, to be written to the VPD starting at the byte
offset specified by DOFST.

Figure 109: VPD Write Request Data

Skipped
Data

VPD contents

Request
Data

Request Data

Data Offset
(DOFST)

Data Length
(DLEN)

Skipped
Data

< Byte 0

The Requester should not read the contents of the VPD while this command is servicing. Reading the
contents of the VPD or the processing of a VPD Read command while a VPD Write command is being
processed may return incorrect data as a result of the read.

If the Data Length plus Data Offset fields are greater than the size of the VPD, then the Responder does
not write to the VPD and responds with an Invalid Parameter Error Response.

NVM ExpressTM Management Interface Revision 1.1b

100

6 NVM Express Admin Command Set

The NVM Express Admin Command Set allows NVMe Admin Commands to be issued to any Controller in
the NVM Subsystem using the out-of-band mechanism. Figure 110 shows NVM Express Admin Commands
that are mandatory, optional, and prohibited for an NVMe Storage Device and an NVMe Enclosure using
the out-of-band mechanism. All NVM Express Admin Commands are prohibited using the in-band tunneling
mechanism. The commands are defined in the NVM Express specification. If an NVMe Admin Command
is issued in a Request Message that is a prohibited command in Figure 110, the Management Endpoint
shall return an Invalid Parameter Error Response with Parameter Error Location pointing to the NVMe
opcode. Future revisions of this specification may add additional commands to Figure 110. The NVM
Express Admin Command Set is only applicable in the out-of-band mechanism and is prohibited in the in-
band tunneling mechanism.

Figure 110: List of NVMe Admin Commands Supported using the Out-of-Band Mechanism

Command
NVMe Storage Device

O/M/P
1

NVMe
Enclosure

O/M/P
1

Abort P P

Asynchronous Event Request P P

Create I/O Completion Queue P P

Create I/O Submission Queue P P

Delete I/O Completion Queue P P

Delete I/O Submission Queue P P

Device Self-test O O

Directive Receive P P

Directive Send P P

Doorbell Buffer Config P P

Firmware Activate/Commit O O

Firmware Image Download O O

Format NVM O P

Get Features M O

Get Log Page M O

Identify M O

Keep Alive P P

Namespace Management O P

Namespace Attachment O P

NVMe-MI Receive P P

NVMe-MI Send P P

Sanitize O O

Security Send O P

Security Receive O P

Set Features O O

Vendor Specific O O

Virtualization Management O O

NOTES:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited from being supported. An NVMe Enclosure that

is also an NVMe Storage Device (i.e., implements namespaces) shall implement mandatory commands
required by either an NVMe Storage Device or an NVMe Enclosure and may implement optional commands
allowed by either an NVMe Storage Device or an NVMe Enclosure. Mandatory commands shall be supported
if the NVMe Controller specified by the Controller ID field supports the command.

NVM ExpressTM Management Interface Revision 1.1b

101

NVMe Admin Commands over the out-of-band mechanism may interfere with host software. A Management
Controller should coordinate with the host or issue only NVMe Admin Commands that do not interfere with
host software or in band NVMe commands (e.g., Identify). Coordination between a Management Controller
and host is outside the scope of this specification.

NVMe Admin Commands over the out-of-band mechanism may target a controller that is disabled or held
in reset by the host. When this occurs, the NVMe Admin Command is processed normally.

The Request Message format for NVMe Admin Commands is shown in Figure 111 and is described Figure
112.

Figure 111: NVMe Admin Command Request Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

OpcodeCommand Flags

Submission Queue Entry Dword 1

...

Submission Queue Entry Dword 5

Data Offset

Data Length

...

Submission Queue Entry Dword 15

NVMe Request Data (optional)

Controller ID

Reserved

Reserved

Submission Queue Entry Dword 10

Byte 0<

Byte 4<

Bytes
68 to N-1

<

Byte 8<

Byte 24<

Byte 28<

Byte 32<

Byte 36<

Byte 40<

Byte 44<

Byte 64<

Byte N<

M
E
B

NVM ExpressTM Management Interface Revision 1.1b

102

Figure 112: NVMe Admin Command Request Description

Byte Description

03:00 NVMe-MI Message Header: Refer to section 3.1.

04
Opcode (OPC): This field specifies the opcode of the command to be executed. Refer to
the NVM Express specification.

05

Command Flags (CFLGS): This field specifies flags for the command.

Bits 7:2 are reserved.

Bit 1, if set to ‘1’, then the command contains an offset value in bytes 28-31. If cleared to
‘0’, then the DOFST field shall be cleared to 0h.

Bit 0, if set to ‘1’, then the command contains a length value in bytes 32-35. If cleared to
‘0’, then the DLEN field shall be cleared to 0h.

07:06
Controller ID (CTLID): This field specifies the Controller ID of the Controller that this
command targets.

11:08
Submission Queue Entry Dword 1 (SQEDW1): Submission Queue Entry Dword 1 as
defined in the NVM Express specification.

15:12
Submission Queue Entry Dword 2 (SQEDW2): Submission Queue Entry Dword 2 as
defined in the NVM Express specification.

19:16
Submission Queue Entry Dword 3 (SQEDW3): Submission Queue Entry Dword 3 as
defined in the NVM Express specification.

23:20
Submission Queue Entry Dword 4 (SQEDW4): Submission Queue Entry Dword 4 as
defined in the NVM Express specification.

27:24
Submission Queue Entry Dword 5 (SQEDW5): Submission Queue Entry Dword 5 as
defined in the NVM Express specification.

31:28

Data Offset (DOFST): For commands that transmit data from the Management Controller
to the Management Endpoint (i.e., the Request Data field in the Request Message has
non-zero length) or do not transmit data, this field shall be cleared to 0h. If this field is not
0h, then the Management Endpoint shall return an Invalid Parameter Error Response.

For commands that transmit data from the Management Endpoint to the Management
Controller (i.e., the Response Data field in the Response Message has non-zero length),
this field specifies the starting offset, in bytes, of the portion of data contained in the NVMe
Admin Command completion data that is returned starting at byte offset 0h of the
Response Data field in the Response Message.

Bits 0 and 1 of this field shall be cleared to ‘0’.

35:32

Data Length (DLEN): For commands that do not transmit data in either the Request
Message or Response Message, this field shall be cleared to 0h. If this field is not 0h,
then the Management Endpoint shall return an Invalid Parameter Error Response.

For commands that transmit data from the Management Controller to the Management
Endpoint (i.e., the Request Data field in the Request Message has non-zero length), this
field specifies the length, in bytes, of the data contained in the Request Data field in the
Request Message.

For commands that transmit data from the Management Endpoint to the Management
Controller (i.e., the Response Data field in the Response Message has non-zero length),
this field specifies the length, in bytes, of the portion of data contained in the NVMe Admin
Command completion data that is returned in the Response Data field in the Response
Message.

Bits 0 and 1 of this field shall be cleared to ‘0’. This field shall be less than or equal to
4,096.

43:36 Reserved

47:44
Submission Queue Entry Dword 10 (SQEDW10): Submission Queue Entry Dword 10
as defined in the NVM Express specification.

NVM ExpressTM Management Interface Revision 1.1b

103

Figure 112: NVMe Admin Command Request Description

Byte Description

51:48
Submission Queue Entry Dword 11 (SQEDW11): Submission Queue Entry Dword 11
as defined in the NVM Express specification.

55:52
Submission Queue Entry Dword 12 (SQEDW12): Submission Queue Entry Dword 12
as defined in the NVM Express specification.

59:56
Submission Queue Entry Dword 13 (SQEDW13): Submission Queue Entry Dword 13
as defined in the NVM Express specification.

63:60
Submission Queue Entry Dword 14 (SQEDW14): Submission Queue Entry Dword 14
as defined in the NVM Express specification.

67:64
Submission Queue Entry Dword 15 (SQEDW15): Submission Queue Entry Dword 15
as defined in the NVM Express specification.

N-1:68 NVMe Request Data (Optional)

N+3:N Message Integrity Check (MIC): Refer to section 3.1.

The Response Message contains the corresponding format for NVMe Admin Commands is shown in Figure
113 and is described in Figure 114.

Figure 113: NVMe Admin Command Response Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Completion Queue Entry Dword 0

NVMe Response Data (optional)

Completion Queue Entry Dword 1

Completion Queue Entry Dword 3

StatusReserved

Byte 0<

Byte 4<

Byte 8<

Byte 12<

Byte 16<

Byte N<

Bytes
20 to N-1

<

Figure 114: NVMe Admin Command Response Description

Byte Description

03:00 NVMe-MI Message Header: Refer to section 3.1.

04
Status: This field indicates the status of the NVMe Admin command. Refer to section
4.1.2.

07:05 Reserved

11:08
Completion Queue Entry Dword 0 (CQEDW0): Completion Queue Entry Dword 0 as
defined in the NVM Express specification.

NVM ExpressTM Management Interface Revision 1.1b

104

Figure 114: NVMe Admin Command Response Description

Byte Description

15:12
Completion Queue Entry Dword 1 (CQEDW1): Completion Queue Entry Dword 1 as
defined in the NVM Express specification.

19:16
Completion Queue Entry Dword 3 (CQEDW3): Completion Queue Entry Dword 3 as
defined in the NVM Express specification. The Command ID field shall be cleared to 0h.

N-1:20 NVMe Response Data (Optional)

N+3:N Message Integrity Check: Refer to section 3.1.

6.1 Request and Response Data

NVMe Admin Commands may contain data as part of the Command Message. This data is passed in the
Request Data field instead of using PRP Lists or SGL segments. The PRP Entry 2 (PRP2) and Metadata
Pointer (MPTR) fields within the NVMe Admin Commands are reserved.

If there is no data sent with the NVMe Admin Command (e.g., the Data Transfer subfield for the opcode is
00b), then the Data Offset and Data Length fields shall be cleared to 0h.

If there is data sent with the NVMe Admin Command (i.e., the Data Transfer subfield for the opcode is 01b),
then the Data Offset field shall be 0h and the Data Length field shall be set to the length of the Request
Data required by the command. If the Data Length field does not correspond to the required length, the
Management Endpoint shall respond with an Invalid Parameter Error Response.

If there is Response Data expected in the Response Message in the completion of the NVMe Admin
Command (i.e., the Data Transfer subfield in the corresponding NVMe Admin Command for the opcode is
10b), then the Data Offset and Data Length fields describe the portion of the NVMe Admin Command
completion data that is transferred in the Response Message. Any remaining data not transferred in the
Response Message is discarded by the Management Endpoint as shown in Figure 115. If the Data Length
plus Data Offset fields are greater than the size of the NVMe Admin Command completion data, the
Management Endpoint should respond with an Invalid Parameter Error Response.

NVM ExpressTM Management Interface Revision 1.1b

105

Figure 115: NVMe Admin Command Response Data Example

Discarded
Data

NVMe Admin
Command

completion data

Response Data

Response Data

Data Offset
(DOFST)

Data Length
(DLEN)

Discarded
Data

< Byte 0

6.2 Status

A Response Message for an NVMe Admin Command may contain two status fields. The first status field,
contained in Byte 4 of the Response Message, is defined by this specification, and the second Status Field,
if present, is contained in Completion Queue Entry Dword 3 and defined in the NVM Express specification.

An NVMe Admin Command Request Message is well formed if it does not contain any of the following
errors:

• Invalid Opcode (e.g., the opcode is not listed in Figure 110);

• Invalid Parameter (e.g., the Controller ID field specifies a Controller ID not implemented in the NVM
Subsystem);

• Invalid Command Size (e.g., the Request Message does not contain a complete command); or

• Invalid Command Input Data Size (e.g., the Request Data field is larger than the size specified in
the Data Length field).

If the NVMe Admin Command Request Message is well formed, then a Success Response is transmitted.
The Success Response contains the status associated with NVMe Admin Command in the Status Field of
Completion Queue Entry Dword 3. The Status Field contains any NVM Express specific status codes (e.g.,
Success or Invalid Parameter).

6.3 Sanitize Operation

Figure 116 specifies the Command Messages allowed during a sanitize operation. Refer to the NVM
Express specification for the definition of a sanitize operation.

NVM ExpressTM Management Interface Revision 1.1b

106

Figure 116: Command Messages Allowed During Sanitize Operation

Command Set Command Message

Allowed During
Sanitize

Operation
1

Management
Interface

Command Set

Configuration Get

Yes

Configuration Set

Controller Health Status Poll

Management Endpoint Buffer Read

Management Endpoint Buffer Write

NVM Subsystem Health Status Poll

Read NVMe-MI Data Structure

Reset

SES Receive

SES Send

VPD Read

VPD Write

NVMe Admin

Command Set
2

Device Self-test

Same restrictions
as defined by the

NVM Express
specification

Firmware Activate/Commit

Firmware Image Download

Format NVM

Get Features

Get Log Page

Identify

Namespace Attachment

Namespace Management

Sanitize

Security Receive/Send

Security Send

Set Features

Vendor Specific

Virtualization Management

PCIe Command
Set

PCIe Configuration Read

Yes

PCIe Configuration Write

PCIe I/O Read

PCIe Memory Read

PCIe Memory Write

NOTES:
1. Refer to the NVM Express specification for the definition of a sanitize

operation.
2. NVMe Admin Commands that are prohibited via the out-of-band mechanism

(refer to Figure 110) are not listed since they are always prohibited including
during a sanitize operation.

NVM ExpressTM Management Interface Revision 1.1b

107

7 PCIe Command Set (Optional)

The PCIe Command Set defines optional commands that a Management Controller may submit to access
the memory, I/O, and configuration addresses spaces associated with a Controller in the NVM Subsystem.
Only addresses mapped to the specified Controller may be accessed (e.g., these commands do not directly
access memory on a host). The NMIMT field in the message header for PCIe Command Messages and
Response Messages is set to 4h (PCIe Command). The PCIe Command Set is only applicable in the out-
of-band mechanism and is prohibited in the in-band tunneling mechanism.

PCIe Commands over the out-of-band mechanism may interfere with host software. A Management
Controller should coordinate with the host or issue only PCIe Commands that do not interfere with host
software or in-band NVMe commands (e.g., PCIe Configuration Read). Coordination between a
Management Controller and a host is outside the scope of this specification.

The Request Message format for PCIe Commands is shown in Figure 117 and described in Figure 118.

Figure 117: PCIe Command Request Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode

PCIe Request Dword 0

PCIe Request Dword 1

Request Data (optional)

Controller ID Reserved

PCIe Request Dword 2

Byte 0<

Byte 4<

Byte 8<

Byte 12<

Byte 16<

Byte N<

Bytes
20 to N-1

<

M
E
B

Figure 118: PCIe Command Request Description

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to section 3.1.

04 Opcode (OPC): This field specifies the opcode of the command to be processed. Refer to Figure 119

05 Reserved

07:06
Controller ID (CTLID): This field specifies the Controller ID of the NVMe Controller that this command
targets.

11:08 PCIe Request Dword 0 (NMD0): This field is command specific Dword 0.

15:12 PCIe Request Dword 1 (NMD1): This field is command specific Dword 1.

19:16 PCIe Request Dword 2 (NMD2): This field is command specific Dword 2.

N-1:20 Request Data (REQD): (Optional)

N+3:N Message Integrity Check (MIC): Refer to section 3.1.

NVM ExpressTM Management Interface Revision 1.1b

108

Figure 119 defines the PCIe Command opcodes. It also shows PCIe Commands that are mandatory,
optional, and prohibited for an NVMe Storage Device and an NVMe Enclosure using the out-of-band
mechanism. All PCIe Commands are prohibited using the in-band tunneling mechanism.

Figure 119: Opcodes for PCIe Commands using an Out-of-Band Mechanism

Opcode

NVMe
Storage
Device

O/M/P
1

NVMe
Enclosure

O/M/P
1

Command

00h O O PCIe Configuration Read

01h O O PCIe Configuration Write

02h O O PCIe Memory Read

03h O O PCIe Memory Write

04h O O PCIe I/O Read

05h O O PCIe I/O Write

06h to FFh - - Reserved

NOTES:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited from being supported. An NVMe

Enclosure that is also an NVMe Storage Device (i.e., implements namespaces) shall
implement mandatory commands required by either an NVMe Storage Device or an NVMe
Enclosure and may implement optional commands allowed by either an NVMe Storage Device
or an NVMe Enclosure.

The Response Message for PCIe Command is shown in Figure 120 and described in Figure 121.

Figure 120: PCIe Command Response Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

 Response Data (optional)

StatusReserved

Byte 0<

Byte 4<

Byte N<

Bytes
8 to N-1

<

Figure 121: PCIe Command Response Description

Byte Description

03:00 NVMe-MI Message Header (NMH): Refer to section 3.1.

04 Status (STATUS): This field indicates the status of the PCIe Command. Refer to section 4.1.2.

07:05 Reserved

N-1:08 Response Data (RESPD): (Optional)

NVM ExpressTM Management Interface Revision 1.1b

109

Figure 121: PCIe Command Response Description

Byte Description

N+3:N Message Integrity Check (MIC): Refer to section 3.1.

PCIe Commands allow the Management Controller to access PCI Express configuration, I/O, and memory
spaces of any Controller in the NVM Subsystem. Support for PCIe Commands is optional and indicated by
the Optionally Supported Commands data structure. Refer to Figure 95.

An implementation may support a subset of the PCIe Commands. For supported commands, an
implementation may block access to certain address space ranges (e.g., due to security concerns). A PCIe
Command that attempts to access such a blocked address range is aborted with the Status field set to
Access Denied.

It is recommended that PCIe Commands provide access to all non-blocked address spaces whenever
MCTP access is supported. In some implementations, it may not be possible to access PCIe resources in
certain states. A PCIe Command processed when a Controller is in one of these states may be aborted
with the Status field set to PCIe Inaccessible. Refer to section 9.1.

A PCIe Command that is not well-formed results in an Error Response. A PCIe Command is well formed if
it does not contain any of the following errors:

• Invalid Opcode (e.g., the Opcode is not listed in Figure 119);

• Invalid Parameter (e.g., the Controller ID field specifies a Controller ID not implemented in the NVM
Subsystem);

• Invalid Command Size (e.g., the Request Message does not contain a complete command); or

• Invalid Command Input Data Size (e.g., the NVMe Request Data field is larger than the size
expected by the command).

7.1 PCIe Configuration Read

The PCIe Configuration Read command allows the Management Controller to read the contents of the PCIe
configuration address space associated with an NVMe Controller in the NVM Subsystem. The Controller
ID field in the Command Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dwords 0 and 1 are shown in Figure 122 and Figure 123 respectively.

Figure 122: PCIe Configuration Read – PCIe Request Dword 0

Bit Description

31:16 Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 123: PCIe Configuration Read – PCIe Request Dword 1

Bit Description

31:12 Reserved

11:00
Offset (OFFSET): This field specifies the offset in bytes into the 4 KiB configuration space associated
with the NVMe Controller at which the read begins.

When this command is completed successfully, PCI configuration space associated with the NVMe
Controller specified by Controller ID is read and returned in the Response Data field. The Offset field

NVM ExpressTM Management Interface Revision 1.1b

110

specifies the starting read offset in PCIe configuration address space and the Length field specifies the
number of bytes to be read. The Response Data field is always an integral number of dwords and is equal
to the Length field rounded up to the next dword. If Length is not an integral number of dwords, then zero
padding follows read data.

If the sum of the Offset and Length fields fall outside of PCI configuration space, then the Management
Endpoint responds with an Invalid Parameter Error Response. The parameter with the error in this case is
always the Offset field.

A Management Endpoint shall support the PCIe Configuration Read command if any of the other PCIe
Command Set commands are supported. Access to the BAR offsets shall not return an Access Denied
Response Message Status (i.e., the correct data shall be provided).

7.2 PCIe Configuration Write

The PCIe Configuration Write command allows the Management Controller to write the contents of the
PCIe configuration address space associated with an NVMe Controller in the NVM Subsystem. The
Controller ID field in the Command Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dwords 0 and 1 are shown in Figure 124 and Figure 125 respectively.

Figure 124: PCIe Configuration Write – PCIe Request Dword 0

Bit Description

31:16 Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be written.

Figure 125: PCIe Configuration Write – PCIe Request Dword 1

Bit Description

31:12 Reserved

11:00
Offset (OFFSET): This field specifies the offset in bytes into the 4,096B configuration space
associated with the NVMe Controller at which the write begins.

When this command is completed successfully, PCI configuration space associated with the NVMe
Controller specified by Controller ID is written with the data contained in the Request Data field. The Offset
field specifies the starting write offset in PCIe configuration address space and the Length field specifies
the number of bytes to be written. The Request Data field is always an integral number of dwords and is
equal to the Length field rounded up to the next dword. If Length is not an integral number of dwords, then
unused padding bytes are discarded.

If the sum of the Offset and Length fields fall outside of PCI configuration space, then the Management
Endpoint responds with an Invalid Parameter Error Response. The parameter with the error in this case is
always the Offset field.

7.3 PCIe I/O Read

The PCIe I/O Read command allows the Management Controller to read the contents of PCIe I/O space
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

NVM ExpressTM Management Interface Revision 1.1b

111

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dword 0 and 1 are shown in Figure 126 and Figure 127 respectively.

Figure 126: PCIe I/O Read – PCIe Request Dword 0

Bit Description

31:19 Reserved

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR) of the I/O
space to be read. BARs are located beginning at 10h in PCI Configuration space and the value of
this field specifies the starting offset of the associated BAR. For a 64-bit BAR, this field should
correspond to the least significant 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h to 7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 127: PCIe I/O Read – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the offset in bytes into the PCI BAR associated with the NVMe
Controller at which the read begins.

When this command is completed successfully, PCI I/O space associated with the NVMe Controller
specified by Controller ID is read and returned in the Response Data field. The Offset field specifies the
starting read offset in PCIe I/O address space specified by the Base Address Register field. The Length
field specifies the number of bytes to be read. The Response Data field is always an integral number of
dwords and is equal to the Length field rounded up to the next dword. If Length is not an integral number
of dwords, then zero padding follows read data.

If the Base Address Register field does not correspond to an I/O BAR implemented by the specified NVMe
Controller, then the Management Endpoint responds with an Invalid Parameter Error Response.

If the sum of the Offset and Length fields fall outside the address range of the BAR specified by the Base
Address Register field, then the Management Endpoint responds with an Invalid Parameter Error
Response. The parameter with the error in this case is always the Offset field.

7.4 PCIe I/O Write

The PCIe I/O Write command allows the Management Controller to write the contents of PCIe I/O space
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0 and 1. PCIe Request Dword 2 is not used and is reserved.
The format of PCIe Request Dword 0 and 1 are shown in Figure 128 and Figure 129 respectively.

Figure 128: PCIe I/O Write – PCIe Request Dword 0

Bit Description

31:19 Reserved

NVM ExpressTM Management Interface Revision 1.1b

112

Figure 128: PCIe I/O Write – PCIe Request Dword 0

Bit Description

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR) of the I/O
space to be written. BARs are located beginning at 10h in PCI Configuration space and the value of
this field specifies the starting offset of the associated BAR. For a 64-bit BAR, this field should
correspond to the least signficant 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h to 7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be written.

Figure 129: PCIe I/O Write – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the offset in bytes into the PCI BAR associated with the NVMe
Controller at which the write begins.

When this command is completed successfully, PCI I/O space associated with the NVMe Controller
specified by Controller ID is written with the data contained in the Request Data field. The Offset field
specifies the starting write offset in PCIe I/O address space specified by the Base Address Register field.
The Length field specifies the number of bytes to be written. The Request Data field is always an integral
number of dwords and is equal to the Length field rounded up to the next dword. If Length is not an integral
number of dwords, then unused padding bytes are discarded.

If the Base Address Register field does not correspond to an I/O BAR implemented by the specified NVMe
Controller, then the Management Endpoint responds with an Invalid Parameter Error Response.

If the sum of the Offset and Length fields fall outside the address range of the BAR specified by the Base
Address Register field, then the Management Endpoint responds with an Invalid Parameter Error
Response. The parameter with the error in this case is always the Offset field.

7.5 PCIe Memory Read

The PCIe Memory Read command allows the Management Controller to read the contents of PCIe memory
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

The command uses PCIe Request Dwords 0, 1, and 2. The format of PCIe Request Dword 0, 1, and 2 are
shown in Figure 130, Figure 131, and Figure 132 respectively.

Figure 130: PCIe Memory Read – PCIe Request Dword 0

Bit Description

31:19 Reserved

NVM ExpressTM Management Interface Revision 1.1b

113

Figure 130: PCIe Memory Read – PCIe Request Dword 0

Bit Description

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR) of the
memory space to be read. BARs are located beginning at 10h in PCI Configuration space and the
value of this field specifies the starting offset of the associated BAR. For a 64-bit BAR, this field
should correspond to the least significant 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h to 7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be read.

Figure 131: PCIe Memory Read – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the least significant 32-bits (i.e., bit 0 to bit 31) of the offset in
bytes into the PCI BAR associated with the NVMe Controller at which the read begins.

Figure 132: PCIe Memory Read – PCIe Request Dword 2

Bit Description

31:00
Offset (OFFSET): This field specifies the most significant 32-bits (i.e., bit 32 to bit 63) of the offset in
bytes into the PCI BAR associated with the NVMe Controller at which the read begins.

When this command is completed successfully, PCI memory space associated with the NVMe Controller
specified by Controller ID is read and returned in the Response Data field. The Offset field specifies the
starting read offset in PCIe memory address space specified by the Base Address Register field. The
Length field specifies the number of bytes to be read. The Response Data field is always an integral number
of dwords and is equal to the Length field rounded up to the next dword. If Length is not an integral number
of dwords, then zero padding follows read data.

If the Base Address Register field does not correspond to one implemented by the specified NVMe
Controller, or the address range specified by the Base Address Range is not a memory region, then the
Management Endpoint responds with an Invalid Parameter Error Response.

If the sum of the Offset and Length fields fall outside the address range specified by the Base Address
Register field, then the Management Endpoint responds with an Invalid Parameter Error Response. The
parameter with the error in this case is always the Offset field.

7.6 PCIe Memory Write

The PCIe Memory Write command allows the Management Controller to write the contents of PCIe memory
associated with an NVMe Controller in the NVM Subsystem. The Controller ID field in the Command
Message specifies the Controller ID that is being accessed.

NVM ExpressTM Management Interface Revision 1.1b

114

The command uses PCIe Request Dwords 0, 1, and 2. The format of PCIe Request Dword 0, 1, and 2 are
shown in Figure 133, Figure 134, and Figure 135 respectively.

Figure 133: PCIe Memory Write – PCIe Request Dword 0

Bit Description

31:19 Reserved

18:16

Base Address Register (BAR): This field specifies the PCI Base Address Register (BAR) of the
memory space to be written. BARs are located beginning at 10h in PCI Configuration space and the
value of this field specifies the starting offset of the associated BAR. For a 64-bit BAR, this field
should correspond to the least significant 32-bits of the BAR.

Value BAR Offset

0h 10h

1h 14h

2h 18h

3h 1Ch

4h 20h

5h 24h

6h to 7h Reserved

15:00 Length (LENGTH): This field specifies the number of bytes to be written.

Figure 134: PCIe Memory Write – PCIe Request Dword 1

Bit Description

31:00
Offset (OFFSET): This field specifies the least significant 32-bits (i.e., bit 0 to bit 31) of the offset in
bytes into the PCI BAR associated with the NVMe Controller at which the write begins.

Figure 135: PCIe Memory Write – PCIe Request Dword 2

Bit Description

31:00
Offset (OFFSET): This field specifies the most significant 32-bits (i.e., bit 32 to bit 63) of the offset in
bytes into the PCI BAR associated with the NVMe Controller at which the write begins.

When this command is completed successfully, PCI memory space associated with the NVMe Controller
specified by Controller ID is written with the data contained in the Request Data field. The Offset field
specifies the starting write offset in PCIe memory address space specified by the Base Address Register
field. The Length field specifies the number of bytes to be written. The Request Data field is always an
integral number of dwords and is equal to the Length field rounded up to the next dword. If Length is not an
integral number of dwords, then unused padding bytes are discarded.

If the Base Address Register field does not correspond to one implemented by the specified NVMe
Controller, or the address range specified by the Base Address Range is not a memory region, then the
Management Endpoint responds with an Invalid Parameter Error Response.

If the sum of the Offset and Length fields fall outside the address range of the BAR specified by the Base
Address Register field, then the Management Endpoint responds with an Invalid Parameter Error
Response. The parameter with the error in this case is always the Offset field.

NVM ExpressTM Management Interface Revision 1.1b

115

8 NVM Express Management Enhancements

This section describes NVMe Management Interface enhancements to the NVM Express specification.

8.1 Identify Controller

The NVMe Identify Controller data structure contains information about an NVMe Controller. Byte 240 to
byte 255 have been allocated by the NVM Express specification for this specification and are defined below.

Figure 136: NVMe Management Interface Identify Controller

Bytes O/M
1
 Description

252:240 Reserved

253 M

NVM Subsystem Report (NVMSR): This field reports information associated with the
NVM Subsystem. At least one bit in this field shall be set to ‘1’.

Bits Description

7:2 Reserved

1
NVMe Enclosure (NVMEE): If set to ‘1’, then the NVM Subsystem is part of
an NVMe Enclosure. If cleared to ‘0’, then the NVM Subsystem is not part
of an NVMe Enclosure.

0
NVMe Storage Device (NVMESD): If set to ‘1’, then the NVM Subsystem
is part of an NVMe Storage Device. If cleared to ‘0’, then the NVM
Subsystem is not part of an NVMe Storage Device.

254 M

VPD Write Cycle Information (VWCI): This field indicates information about remaining
number of times that VPD contents are able to be updated using the VPD Write
command.

Bits Description

7
VPD Write Cycle Remaining Valid (VWCRV): If this bit is set to ‘1’, then
the VPD Write Cycle Remaining field is valid. If this bit is cleared to ‘0’, then
the VPD Write Cycles Remaining field is invalid and cleared to 0h.

6:0

VPD Write Cycles Remaining (VWCR): If the VPD Write Cycle Remaining
Valid bit is set to ‘1’, then this field contains a value indicating the remaining
number of times that VPD contents are able to be updated using the VPD
Write command. If this field is set to 7Fh, then the remaining number of times
that VPD contents are able to be updated using the VPD Write command is
greater than or equal to 7Fh.

If the VPD Write Cycle Remaining Valid bit is cleared to ‘0’, then this field is
not valid and shall be cleared to a value of 0h.

255 M

Management Endpoint Capabilities (MEC): This field indicates the capabilities of the
Management Endpoint in the Controller.

Bits Description

7:2 Reserved

1
PCIe Port Management Endpoint (PCIEME): If set to ‘1’, then the NVM
Subsystem contains a Management Endpoint on a PCIe port.

0
SMBus/I2C Port Management Endpoint (SMBUSME): If set to ‘1’, then the
NVM Subsystem contains a Management Endpoint on an SMBus/I2C port.

NOTES:
1. O/M definition: O = Optional, M = Mandatory.

NVM ExpressTM Management Interface Revision 1.1b

116

8.2 Management Interface Specific Features

The NVMe Get Features and Set Features Admin commands are used to retrieve and modify Feature
values. Feature Identifiers 78h to 7Fh have been allocated by the NVM Express specification for this
specification and are defined below.

Figure 137: NVMe Management Interface Feature Identifiers

Feature
Identifier

NVMe Storage

Device O/M
1

NVMe
Enclosure

O/M
1

Persistent Across
Power States and

Reset
2

Uses Memory
Buffer for
Attributes

Description

78h to 7Dh - - - - Reserved

7Eh M M No Yes Controller Metadata

7Fh M O No Yes Namespace Metadata

NOTES:
1. O/M definition: O = Optional, M = Mandatory. Mandatory features shall be supported if the NVM Subsystem

implements a Management Endpoint. These features are not mandatory if the NVM Subsystem does not
implement a Management Endpoint.

2. This column is only valid if bit 4 in the Optional NVM Command Support field of the Identify Controller Data
Structure is cleared to ‘0’. Refer to the NVM Express specification.

8.2.1 Controller Metadata

This feature is used to store metadata about the host platform in an NVM Subsystem for later retrieval. The
values stored in the Controller Metadata Feature do not modify Controller behavior.

The Controller Metadata feature uses NVMe Set Feature Command Dword 11 as shown in Figure 138.

Figure 138: Host Metadata – Command Dword 11

Bit Description

31:15 Reserved

14:13

Element Action (EA): This field specifies the action to perform on the Metadata Element
Descriptor data structure. This field shall be cleared to 0h for a Get Features.

Value Definition

00b Add/Update Entry

01b Delete Entry

10b to 11b Reserved

If the Element Action field is cleared to 00b (Add/Update Entry) and a Metadata Element Descriptor
with the specified Element Type (refer to Figure 140) does not exist in Controller Metadata, then
the Controller creates a new descriptor with the value in the Controller Metadata structure. This
operation is performed in an atomic manner.

If the Element Action field is cleared to 00bh (Add/Update Entry) and a Metadata Element
Descriptor with the specified Element Type exists in the Controller Metadata, then the Controller
updates the descriptor with the value in the Controller Metadata structure. This operation is
performed in an atomic manner.

If the Element Action field is set to 01b (Delete Entry) and a Metadata Element Descriptor with the
specified Element Type does not exist in the Controller Metadata, then no operation is performed,
and the command completes successfully.

If the Element Action field is set to 01b (Delete Entry) and a Metadata Element Descriptor with the
specified Element Type exists in the Controller Metadata, then the Controller deletes the specified
Metadata Element Descriptor. This operation is performed in an atomic manner.

NVM ExpressTM Management Interface Revision 1.1b

117

Figure 138: Host Metadata – Command Dword 11

Bit Description

12:00 Reserved

New Metadata Element Descriptors may be added, updated, or deleted based on the action specified in
the Element Action field.

If a Set Features command is submitted for this Feature, a Host Metadata data structure, defined in Figure
139, is transferred in the data buffer for the command. The Host Metadata data structure is 4 KiB in size
and contains zero or more Metadata Element Descriptors. If host software attempts to add or update a
Metadata Element that causes the stored Host Metadata data structure to grow larger than 4 KiB, the
Controller shall abort the command with an Invalid Parameter Error Response. The Host Metadata Data
Structure for this feature is independent of the Host Metadata data structure for the Namespace Metadata
feature described in section 8.2.2.

Figure 139: Host Metadata Data Structure

Byte Description

00
Number of Metadata Element Descriptors: This field contains the number of Metadata Element
Descriptors in the data structure.

01 Reserved

x:02 Metadata Element Descriptor 0: This field contains the first Metadata Element descriptor.

y:x+1
Metadata Element Descriptor 1: This field contains the second Metadata Element descriptor or
0h if there is only 1 entry.

… …

4095:z
Metadata Element Descriptor N: This field contains the (N+1)th Metadata Element descriptor or
0h if there are fewer than N+1 entries.

A Host Metadata data structure may contain at most one Metadata Element Descriptor of each element
type. Each Metadata Element Descriptor contains the data structure shown in Figure 140.

Figure 140: Metadata Element Descriptor

Bit Description

31 + (Element
Length*8) :32

Element Value (EVAL): This field specifies the value for the element.

31:16
Element Length (ELEN): This field specifies the length of the Element Value field in bytes.
This field shall be 0h when deleting an entry (EA = 01b). This field should be non-zero when
adding/updating and entry (EA = 00b).

15:12 Reserved

11:08

Element Revision (ER): This field specifies the revision of this element value. Unless
specified otherwise elsewhere in this specification, all Metadata Element Descriptors
compliant with this version of the NVMe-MI Specification shall clear this field to a value of
0h.

07:05 Reserved

04:00

Element Type (ET): This field specifies the type of metadata stored in the descriptor.

Value Definition

00h Reserved

01h to 017h
Element types defined by this specification. Controller
Metadata Element types are defined in Figure 141. Namespace
Metadata Element types are defined in Figure 142.

18h to 1Fh Vendor Specific

NVM ExpressTM Management Interface Revision 1.1b

118

If a Get Features command is issued for this Feature, all Controller Metadata associated with the specified
Controller is added to a Host Metadata Data Structure specified in Figure 139 and returned in the data
buffer for that command. The data buffer size is equal to the size of the Host Metadata Data Structure and
is 4,096 bytes in size.

Figure 141: Controller Metadata Element Types

Value Definition

00h Reserved

01h
Operating System Controller Name: The name of the Controller
in the operating system as a UTF-8 string.

02h
Operating System Driver Name: The name of the driver in the
operating system as a UTF-8 string.

03h
Operating System Driver Version: The version of the driver in
the operating system as a UTF-8 string.

04h
Pre-boot Controller Name: The name of the Controller in the pre-
boot environment as a UTF-8 string.

05h
Pre-boot Driver Name: The name of the driver in the pre-boot
environment as a UTF-8 string.

06h
Pre-boot Driver Version: The version of the driver in the pre-boot
environment as a UTF-8 string.

07h to 17h Reserved

18h to 1Fh Vendor Specific

Controller Metadata is reset on a Controller Level Reset (i.e., the number of stored Metadata Element
Descriptors is zero). Executing a Get Features command while the Controller is disabled returns zero
Metadata Element Descriptors.

8.2.2 Namespace Metadata

This feature is used to store metadata about a namespace associated with a Controller in the NVM
Subsystem for later retrieval. The values stored in the Namespace Metadata Feature do not modify
Controller behavior on the namespace. This feature is namespace specific.

The Namespace Metadata feature uses Command Dword 11 as shown in Figure 138.

New Metadata Element Descriptors may be added, updated, or deleted based on the action specified in
the Element Action field.

If a Set Features command is submitted for this Feature, a Host Metadata data structure, defined in Figure
139, is transferred in the data buffer for the command. The Host Metadata data structure is 4 KiB in size
and contains zero or more Metadata Element Descriptors. If host software attempts to add or update a
Metadata Element Descriptor that causes the stored Host Metadata data structure to grow larger than 4 KiB,
the Controller shall abort the command with an Invalid Parameter Error Response. The Host Metadata
structure for this feature is independent of the Host Metadata data structure for the Controller Metadata
feature described in section 8.2.1.

A Host Metadata data structure may contain up to one Metadata Element Descriptor of each element type.
Each Metadata Element Descriptor contains the data structure shown in Figure 140.

If a Get Features command is issued for this Feature, all Namespace Metadata associated with the
specified Controller is added to a Host Metadata Data Structure specified in Figure 139 and returned in the

NVM ExpressTM Management Interface Revision 1.1b

119

data buffer for that command. The data buffer size is equal to the size of the Host Metadata Data Structure
and is 4 KiB in size.

Namespace Metadata is reset on a Controller Level Reset (i.e., the number of stored Metadata Element
Descriptors is zero). Executing a Get Features command while the Controller is disabled returns zero
Metadata Element Descriptors.

Figure 142: Namespace Metadata Element Types

Value Definition

00h Reserved

01h
Operating System Namespace Name: The name of the
namespace in the operating system as a UTF-8 string.

02h
Pre-boot Namespace Name: The name of the namespace in the
pre-boot environment as a UTF-8 string.

03h to 17h Reserved

18h to 1Fh Vendor Specific

NVM ExpressTM Management Interface Revision 1.1b

120

9 Management Architecture

9.1 Out-of-Band Operational Times

In the out-of-band mechanism, the ability of a Management Endpoint to receive and process Request
Messages outlined in this specification is dependent on the state of the Management Endpoint. This section
enumerates Management Endpoint operational times and the operations supported in each of these
operational times.

The NVM Subsystem power state is defined by the state of main power and auxiliary power. Main power
consists of one or more voltage rails as defined by form factor. When main power consists of multiple
voltage rails, main power is considered “on” when power is good on all main voltage rails. Auxiliary power
is optionally supported by a form factor and enables SMBus/I2C communications in the absence of main
power. Only the Powered On and Powered Off states are applicable in form factors and platforms that do
not support auxiliary power. Figure 143 defines the power states of a Management Endpoint. Note that
auxiliary power is described from the perspective of the NVM Subsystem and could be provided by any
appropriate power rail in a host platform.

The operations supported in each NVM subsystem power state are summarized in Figure 143. VPD
SMBus/I2C access consists of processing read operations to the FRU Information Device. SMBus/I2C
MCTP access consists of processing and responding to MCTP messages on the NVM Subsystem
SMBus/I2C port. PCIe MCTP access consists of processing and responding to MCTP messages issued on
any NVM Subsystem PCIe port. The behavior of an operation that is “Not Supported” in Figure 143 is
undefined.

Figure 143: Operations Supported During NVM Subsystem Power States

Operation

P
o

w
e
re

d
 O

ff

-A
ll
 P

o
w

e
r

R
a
il
s
 O

ff

P
o

w
e
re

d
 O

n

-A
ll
 P

o
w

e
r

R
a
il
s
 O

n

A
u

x
il
ia

ry
 P

o
w

e
r

O
n

ly
 2

-M
a
in

 P
o

w
e
r

O
ff

-A

u
x
il
ia

ry
 P

o
w

e
r

O
n

M
a
in

 P
o

w
e
r

O
n

ly
 2

-M
a
in

 P
o

w
e
r

O
n

-A

u
x
il
ia

ry
 P

o
w

e
r

O
ff

SMBus/I2C
VPD and

SMBus/I2C Mux
Access

Not Supported Supported Supported
Implementation

Specific

SMBus/I2C
MCTP Access

Not Supported Supported Optional
1

 Implementation
Specific

PCIe MCTP
Access

Not Supported Supported Not Supported Supported

NOTES:
1. An implementation that supports SMBus/I2C MCTP Access during Auxiliary Power may support a

subset of commands during this power state. The commands that are supported are implementation
specific.

2. Auxiliary Power Only and Main Power Only columns are not applicable to form factors that do not
define Auxiliary power.

When an NVM Subsystem transitions from a power state in which accesses are not supported to one where
accesses are supported, accesses shall be processed 1 s after entering the power state in which accesses

NVM ExpressTM Management Interface Revision 1.1b

121

are supported. For example, an SMBus/I2C MCTP access issued 1 s after transitioning from a “Powered
Off” to a “Main Power” state is guaranteed to be processed. The behavior of accesses prior to this 1 s time
interval is undefined. For example, the behavior of an SMBus/I2C MCTP access issued 50 ms after
transitioning from a “Powered Off” to a “Main Power” state is undefined.

When transitioning between power states in which accesses are supported in both states (i.e., the state
before and after the transition), there is no interruption in access processing (i.e., accesses are processed
prior to the state transition, during the state transition, and immediately after entering the new power state).

Although not recommended, an implementation may choose not to support processing of PCIe Commands
that target a Controller in the NVM Subsystem that is in any of the following states:1

• Controller Level Reset;

• SR-IOV virtual function is not enabled;

• During any type of PCI Express Conventional Reset;

• During a PCI Express Function Level Reset (FLR);

• When the PCI Express Function is in a non-D0 power D-state; or

• When the PCI Express link is down (i.e., not in the DL_Active state).

If a PCIe Command is received that targets a Controller in one of these states and the implementation does
not support processing of PCIe Commands in that state, then the PCIe command is completed with status
PCIe Inaccessible. Processing of supported PCIe Commands is required in all other Controller states.

If a PCIe Command is received that targets a Controller whose corresponding PCIe link is in a low power
state (i.e., PCIe ASPM), then processing of the command may cause the link to temporarily exit the low
power state.

9.2 Vital Product Data

The Vital Product Data (VPD) is information describing an NVMe Storage Device. Each NVMe Storage
Device FRU shall have a FRU Information Device with a size of 256 bytes to hold the VPD as defined in
the IPMI Platform Management FRU Information Storage Definition. The VPD for NVMe Storage Device
FRUs shall contain the required elements defined in Figure 144. The VPD and FRU Information Device are
optional for a) NVMe Storage Devices that are not FRUs (e.g., NVMe Storage Devices with a Form Factor
type of Integrated per Figure 156), and b) NVMe Enclosures. The VPD contents for these optional use
cases is outside the scope of this specification.

The VPD shall be accessible using the VPD Read command on all Management Endpoints on the NVMe
Storage Device FRU. The entire contents of the VPD may be updated using the VPD Write command.

If the NVM Subsystem has an SMBus/I2C interface, the VPD shall be accessible at the SMBus/I2C address
of the FRU Information Device using the access mechanism over I2C as defined in the IPMI Platform
Management FRU Information Storage Definition. Updating the VPD by writing to the FRU Information
Device directly on SMBus/I2C shall not be supported if the VPD Write command is supported.

Figure 144: VPD Elements

Byte Name

7:0 Common Header

Vendor Specific Product Info Area (Optional)

Vendor Specific MultiRecord Info Area

1 A Management Controller shall only send these commands using SMBus/I2C or another PCIe port since
the link associated with the PCIe port and controller is down in these states.

NVM ExpressTM Management Interface Revision 1.1b

122

Figure 144: VPD Elements

Byte Name

Vendor Specific Internal Use Area (Optional)

Vendor Specific Chassis Info Area (Optional)

Vendor Specific Board Info Area (Optional)

9.2.1 Common Header

The fields that make up the VPD Common Header are shown in Figure 145.

Figure 145: Common Header

Byte
Factory
Default

Description

0 01h IPMI Format Version Number (IPMIVER): This field indicates the IPMI Format Version.

1 Impl Spec
Internal Use Area Starting Offset (IUAOFF): This field indicates the starting offset in
multiples of 8 bytes for the Internal Use Area. A value of 0h may be used to indicate the
Internal Use Area is not present.

2 Impl Spec
Chassis Info Area Starting Offset (CIAOFF): This field indicates the starting offset in
multiples of 8 bytes for the Chassis Info Area. A value of 0h may be used to indicate the
Chassis Info Area is not present.

3 Impl Spec
Board Info Area Starting Offset (BIAOFF): This field indicates the starting offset in multiples
of 8 bytes for the Board Info Area. A value of 0h may be used to indicate the Board Info Area
is not present.

4 Impl Spec
Product Info Area Starting Offset (PIAOFF): This field indicates the starting offset in
multiples of 8 bytes for the Product Info Area.

5 Impl Spec
MultiRecord Info Area Starting Offset (MRIOFF): This field indicates the starting offset in
multiples of 8 bytes for the MultiRecord Info Area.

6 00h Reserved

7 Impl Spec

Common Header Checksum (CHCHK): Checksum computed over byte 0 to byte 6. The
checksum is computed by adding the 8-bit value of the bytes modulo 256 and then taking the
2’s complement of this sum. When the checksum and the sum of the bytes module 256 are
added, the result should be 0h.

9.2.2 Product Info Area (offset 8 bytes)

The optional Product Info Area shall have the same format and conventions as the Product Info Area Format
as defined by the IPMI Platform Management FRU Information Storage Definition. Therefore, all fields
within the Product Info Area shall not follow the conventions defined in section 1.8. The Product Info Area
factory default values shall be set to the values defined in Figure 147. The Type/Length bytes use the format
shown in Figure 146.

Figure 146: Type/Length Byte Format

Bits Field Name Description

7:6 Type Code
Specifies field encoding
11b – Always corresponds to ASCII in this specification

5:0 Number of Data Bytes
Specifies field length
0h indicates that the field is empty

NVM ExpressTM Management Interface Revision 1.1b

123

Figure 147: Product Info Area Factory Default Values

Factory
Default

Description

01h IPMI Format Version Number (IPMIVER): This field indicates the IPMI Format Version.

Impl Spec
Product Info Area Length (PALEN): This field indicates the length of the Product Info Area in
multiples of 8 bytes.

19h
Language Code (LCODE): This field indicates the language used. A value of 19h is used to
indicate English.

Impl Spec
Manufacturer Name Type/Length (MNTL): This field indicates the type and length of the
Manufacturer Name field. The maximum length is 8.

Impl Spec

Manufacturer Name (MNAME): This field indicates the Manufacturer name in 8-bit ASCII. Unused
bytes should be NULL characters.

The Manufacturer name in this field should correspond to that in the PCI Subsystem Vendor ID
(SSVID) and IEEE OUI Identifier fields in the Identify Controller Data Structure.

Impl Spec
Product Name Type/Length (PNTL): This field indicates the type and length of the Product Name
field. The maximum length is 24.

Impl Spec
Product Name (PNAME): This field indicates the Product name in 8-bit ASCII. Unused bytes
should be NULL characters.

Impl Spec
Product Part/Model Number Type/Length (PPMNNTL): This field indicates the type and length
of the Product Part/Model Number field. The maximum length is 40.

Impl Spec

Product Part/Model Number (PPMN): This field indicates the Product Part/Model Number in 8-
bit ASCII. Unused bytes should be NULL characters.

This field should contain the same value as the Model Number (NM) field in the NVMe Identify
Controller Data Structure.

Impl Spec
Product Version Type/Length (PVTL): This field indicates the type and length of the Product
Part/Model Number field. The maximum length is 2.

Impl Spec
Product Version (PVER): This field indicates the Product Version in 8-bit ASCII. Unused bytes
should be NULL characters.

Impl Spec
Product Serial Number Type/Length (PSNTL): This field indicates the type and length of the
Product Serial Number field. The maximum length is 20.

Impl Spec

Product Serial Number (PSN): This field indicates the Product Serial Number in 8-bit ASCII.
Unused bytes should be NULL characters.

This field should contain the same value as the Serial Number (SN) field in the NVMe Identify
Controller Data Structure.

Impl Spec
Asset Tag Type/Length (ATTL): This field indicates the type and length of the Asset Tag field. A
value of 0h may be used to indicate an Asset Tag is not present.

Impl Spec Asset Tag (AT): This field indicates the asset tag.

Impl Spec
FRU File ID Type/Length (ATTL): This field indicates the type and length of the FRU File ID field.
A value of 0h may be used to indicate a FRU File ID is not present.

Impl Spec
FRU File ID (FFI): This field provides manufacturing aid for verifying the file that was used during
manufacture or field update to load the FRU information.

Impl Spec
Custom Product Info Area (CPIA): This optional field allows for the addition of custom Product
Info Area fields that shall be proceeded with a Type/Length field.

C1h End of Record (EOR): A value of C1h in this field indicates the end of record.

0h
Zero or more bytes of value 0h that are used to pad the size of the Product Info Area to a multiple
of 8 bytes.

Impl Spec

Product Info Area (PICHK): Checksum computed over all bytes in the Product Info Area excluding
this field. The checksum is computed by adding the 8-bit value of the byes modulo 256 and then
taking the 2’s complement of this sum. When the checksum and the sum of the bytes module 256
are added, the result should be 0h.

NVM ExpressTM Management Interface Revision 1.1b

124

9.2.3 NVMe MultiRecord Area

This MultiRecord is used to describe the form factor, power requirements, and capacity of NVMe Storage
Devices with a single NVM Subsystem. Starting with version 1.1 of this specification, this MultiRecord has
been superseded by the Topology MultiRecord (refer to section 9.2.5). For backwards compatibility with
Management Controllers designed to versions of this specification prior to 1.1, the NVMe MultiRecord and
the NVMe PCIe Port MultiRecord (refer to section 9.2.4) should both be included in the VPD in addition to
the Topology MultiRecord unless the NVMe Storage Device FRU has Expansion Connectors, has more
than one NVM Subsystem, or if including both this MultiRecord and the NVMe PCIe Port MultiRecord would
extend the size of the VPD beyond the 256-byte limit. If both the NVMe MultiRecord and NVMe PCIe Port
MultiRecord cannot fit within the size limit of the VPD then neither MultiRecord should be included.

Figure 148: NVMe MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Bh NVMe Record Type ID

01 2h or 82h

Record Format:

Bit Definition

7 Set to ‘1’ if last record in list.

6:0 Record format version = 2.

02 3Bh
Record Length (RLEN): This field indicates the length of the MultiRecord Area in bytes
without including the first 5 bytes that are common to all MultiRecords.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum (i.e., the
modulo 256 sum of the record data bytes from byte offset 05 to the end of this record
plus this checksum byte equals zero).

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero checksum (i.e.,
the modulo 256 sum of the first byte of the header through this checksum byte equals
zero).

05 0h
NVMe MultiRecord Area Version Number: This field indicates the version number of
this NVMe MultiRecord. This field shall be cleared to 0h in this version of the specification.

06
Impl
Spec

Form Factor (FF): This field indicates the form factor of the Management Endpoint. Refer
to the values in Figure 156.

12:07 0h Reserved

13
Impl

Spec
1

Initial 1.8 V Power Supply Requirements: This field specifies the initial 1.8 V power
supply requirements in Watts prior to receiving a Set Slot Power message.

14
Impl

Spec
1

Maximum 1.8 V Power Supply Requirements: This field specifies the maximum 1.8 V
power supply requirements in Watts.

15
Impl

Spec
1

Initial 3.3 V Power Supply Requirements: This field specifies the initial 3.3 V power
supply requirements in Watts prior to receiving a Set Slot Power message.

16
Impl

Spec
1

Maximum 3.3 V Power Supply Requirements: This field specifies the maximum 3.3 V
power supply requirements in Watts.

17 0h Reserved

18
Impl

Spec
1

Maximum 3.3 V aux Power Supply Requirements: This field specifies the maximum
3.3 V power supply requirements in 10 mW units.

19
Impl

Spec
1

Initial 5 V Power Supply Requirements: This field specifies the initial 5 V power supply
requirements in Watts prior to receiving a Set Slot Power message.

20
Impl

Spec
1

Maximum 5 V Power Supply Requirements: This field specifies the maximum 5 V
power supply requirements in Watts.

21
Impl

Spec
1

Initial 12 V Power Supply Requirements: This field specifies the initial 12 V power
supply requirements in Watts prior to receiving a Set Slot Power message.

NVM ExpressTM Management Interface Revision 1.1b

125

Figure 148: NVMe MultiRecord Area

Byte
Offset

Factory
Default

Description

22
Impl

Spec
1

Maximum 12 V Power Supply Requirements: This field specifies the maximum 12 V
power supply requirements in Watts.

23
Impl
Spec

Maximum Thermal Load: This field specifies the maximum thermal load from the NVM
Subsystem in Watts.

36:24
Impl
Spec

Total NVM Capacity: This field indicates the total NVM capacity of the NVM Subsystem
in bytes.

If the NVM Subsystem supports Namespace Management, then this field should
correspond to the value reported in the TNVMCAP field in the NVMe Identify Controller
Data Structure.

A value of 0h may be used to indicate this feature is not supported.

63:37 0h Reserved

NOTES:
1. Power supply requirements shall be set to the smallest integer value which fully supplies the necessary

power to the NVMe Storage Device. A value of 0h indicates that the power supply voltage is not used.

9.2.4 NVMe PCIe Port MultiRecord Area

This MultiRecord is used to describe the PCIe connectivity for NVMe Storage Devices with a single NVM
Subsystem. Starting with version 1.1 of this specification, this MultiRecord has been superseded by the
Topology MultiRecord (refer to section 9.2.5). For backwards compatibility with Management Controllers
designed to versions of this specification prior to 1.1, the NVMe PCIe Port MultiRecord and the NVMe
MultiRecord (refer to section 9.2.3) should both be included in the VPD in addition to the Topology
MultiRecord unless the NVMe Storage Device FRU has Expansion Connectors, has more than one NVM
Subsystem, or if including both this MultiRecord and the NVMe MultiRecord would extend the size of the
VPD beyond the 256-byte limit. If both the NVMe MultiRecord and NVMe PCIe Port MultiRecord cannot fit
within the size limit of the VPD then neither MultiRecord should be included.

Figure 149: NVMe PCIe Port MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Ch NVMe PCIe Port Record Type ID

01 2h or 82h

Record Format:

Bit Definition

7 Set to ‘1’ if last record in list.

6:0 Record format version = 2.

02 0Bh
Record Length (RLEN): This field indicates the length of the MultiRecord Area in bytes
without including the first 5 bytes that are common to all MultiRecords.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum (i.e., the
modulo 256 sum of the record data bytes from byte offset 05 to the end of this record plus
this checksum byte equals zero).

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero checksum (i.e.,
the modulo 256 sum of the first byte of the header through this checksum byte equals
zero).

05 1h
NVMe PCIe Port MultiRecord Area Version Number: This field indicates the version
number of this NVMe PCIe Port MultiRecord. This field shall be set to 1h in this version of
the specification.

06
Impl
Spec

PCIe Port Number: This field contains the PCIe port number. This is the same value as
that reported in the Port Number field in the PCIe Link Capabilities Register.

NVM ExpressTM Management Interface Revision 1.1b

126

Figure 149: NVMe PCIe Port MultiRecord Area

Byte
Offset

Factory
Default

Description

07
Impl
Spec

Port Information: This field indicates information about the PCIe Ports in the device.

Bits 7:1 are reserved.

Bit 0, if set to ‘1’ indicates that all PCIe ports within the device have the same capabilities
(i.e., the capabilities listed in this structure are consistent across each PCIe port).

08
Impl
Spec

PCIe Link Speed: This field indicates a bit vector of link speeds supported by the PCIe
port.

Bit Definition

7:4 Reserved

3 Set to ‘1’ if the PCIe link supports 16.0 GT/s, otherwise cleared to ‘0’.

2 Set to ‘1’ if the PCIe link supports 8.0 GT/s, otherwise cleared to ‘0’.

1 Set to ‘1’ if the PCIe link supports 5.0 GT/s, otherwise cleared to ‘0’.

0 Set to ‘1’ if the PCIe link supports 2.5 GT/s, otherwise cleared to ‘0’.

09
Impl
Spec

PCIe Maximum Link Width: The maximum PCIe link width for this NVM Subsystem port.
This is the expected negotiated link width that the port link trains to if the platform supports
it. A Requester may compare this value with the PCIe Negotiated Link Width to determine
if there has been a PCIe link training issue.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

10
Impl
Spec

MCTP Support: This field contains a bit vector that specifies the level of support for the
NVMe Management Interface.

Bits 7:1 are reserved.
Bit 0, if set to ‘1’ indicates that MCTP-based management commands are supported on
the PCIe port.

11
Impl
Spec

Ref Clk Capability: This field contains a bit vector that specifies the PCIe clocking modes
supported by the port.

Bit Definition

7:4 Reserved

3
Set to ‘1’ if the device automatically uses RefClk if provided and otherwise
uses SRIS, otherwise cleared to ‘0’.

2
Set to ‘1’ if the PCIe link supports Separate RefClk with SSC (SRIS),
otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports Separate RefClk with no SSC (SRNS),
otherwise cleared to ‘0’.

0 Set to ‘1’ if the PCIe link supports common RefClk, otherwise cleared to ‘0’.

NVM ExpressTM Management Interface Revision 1.1b

127

Figure 149: NVMe PCIe Port MultiRecord Area

Byte
Offset

Factory
Default

Description

12
Impl
Spec

Port Identifier: This field contains the NVMe-MI Port Identifier.

15:13 00h Reserved

9.2.5 Topology MultiRecord Area

This MultiRecord describes an NVMe Storage Device’s architectural elements and their connections. It is
required on all NVMe Storage Device FRUs.

The Topology MultiRecord consists mainly of a list of Element Descriptors as shown in Figure 150. Element
Descriptors are used to describe the architectural elements that make up an NVMe Storage Device such
as NVM Subsystems, Upstream Connectors, Expansion Connectors, SMBus/I2C elements, and PCIe
elements. Each architectural element has an Element Descriptor Type. The format of an Element Descriptor
is shown in Figure 152 and Element Descriptor Types are listed in Figure 153.

Element Descriptors may have fields that are used to point to other Element Descriptors. When an Element
Descriptor contains a pointer to another Element Descriptor, then the Element Descriptor containing the
pointer is called the parent and the Element Descriptor pointed to by the parent is called the child. An
Element Descriptor may be both a child and a parent.

An Element Descriptor pointer is either populated with an index of the child or 0h to indicate that there is
no child. The index is a logical construct that indicates the position of an Element Descriptor in the VPD.
The Element Descriptor at the lowest byte offset in the VPD has an index of 0, the Element Descriptor at
the second lowest byte offset has an index of 1, and so on. A child may have an index that is higher or
lower than its parent. The Element Descriptor at the lowest byte offset (i.e., index 0) shall be an Upstream
Connector Element Descriptor. Some Element Descriptors use indexes in a similar manner to select a Port
from a list of Ports.

Figure 150: Topology MultiRecord

Byte
Offset

Factory
Default

Description

00 0Dh Topology Record Type ID

01 2h or 82h

Record Format:

Bit Definition

7 Set to ‘1’ if last record in list.

6:0 Record format version = 2.

02
Impl
Spec

Record Length (RLEN): This field indicates the length of the MultiRecord Area in bytes
without including the first 5 bytes that are common to all MultiRecords.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum (i.e., the
modulo 256 sum of the record data bytes from byte offset 05 to the end of this record plus
this checksum byte equals zero).

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero checksum (i.e.,
the modulo 256 sum of the first byte of the header through this checksum byte equals
zero).

05 0h
Version Number: This field indicates the version number of this Topology MultiRecord.
This field shall be cleared to 0h in this version of the specification.

06 0h Reserved

07
Impl
Spec

Element Count (N): This field indicates the number of Element Descriptors in this
Topology MultiRecord. The value of 0h is reserved.

Impl
Spec

Impl
Spec

Element Descriptor 0: This field contains the first Element Descriptor in this Topology
MultiRecord.

NVM ExpressTM Management Interface Revision 1.1b

128

Figure 150: Topology MultiRecord

Byte
Offset

Factory
Default

Description

Impl
Spec

Impl
Spec

Element Descriptor 1: This field contains the second Element Descriptor in this Topology
MultiRecord if Element Count is greater than one, otherwise this field is not present.

… … …

The VPD may contain more than one Topology MultiRecord only when the list of required Element
Descriptors is too large to fit into a single Topology MultiRecord. If there is more than one Topology
MultiRecord, then the index associated with Element Descriptors continues to increment sequentially
across Topology MultiRecord instances. Figure 151 illustrates multiple Topology MultiRecords where Index
0 is at the lowest byte offset of any Element Descriptor in the VPD. Parent Element Descriptors may be in
different Topology MultiRecords from their Child Element Descriptors.

Figure 151: Indexing Across Extended MultiRecords

Index
Topology

Multi Record
Instance

Element Descriptors
Child

Indices

0

0

Element Descriptor 0, parent of 2, 3, 5 2, 3, 5

1 Element Descriptor 1, child of 5

2 Element Descriptor 2, child of 0

3 Element Descriptor 3, child of 0

4
1 Element Descriptor 0

1

5 Element Descriptor 1, child of 0, parent of 1 1

NOTES:
1. This Element Descriptor is an Extended Element Descriptor that extends the preceding

Element Descriptor at index 3. Extended Element Descriptors are further detailed in
section 9.2.5.1.

Figure 152: Element Descriptor

Byte Offset
Factory
Default

Description

00
Impl
Spec

Type: This field indicates the type of the Element Descriptor. Values are defined
in Figure 153.

01
Impl
Spec

Revision: This field indicates the revision of the Element Descriptor.

02
Impl
Spec

Length: Number of bytes in the Element Descriptor.

Length - 1:03
Impl
Spec

This area contains the Type-specific information associated with the Element
Descriptor. Type-specific information is defined for each Element Descriptor
Type in the subsections below.

Element Descriptor Types, fields, and bits in the VPD that are defined as reserved should be ignored by
Requesters to ensure forward and backward compatibility. Extra trailing bytes in an Element Descriptor
should be treated as reserved in order to tolerate the Length of an Element Descriptor increasing as new
fields are appended in future revisions of the Element Descriptor.

Element Descriptor Types are defined in Figure 153. Subsequent sections define the details associated
with each Element Descriptor Type.

NVM ExpressTM Management Interface Revision 1.1b

129

Figure 153: Element Descriptor Types

Value Name Reference Section

0 Reserved -

1 Extended Element Descriptor 9.2.5.1

2 Upstream Connector Element Descriptor 9.2.5.2

3 Expansion Connector Element Descriptor 9.2.5.3

4 Label Element Descriptor 9.2.5.4

5 SMBus/I2C Mux Element Descriptor 9.2.5.5

6 PCIe Switch Element Descriptor 9.2.5.6

7 NVM Subsystem Element Descriptor 9.2.5.7

8 to 239 Reserved -

240 to 255 Vendor specific 9.2.5.8

9.2.5.1 Extended Element Descriptor

The Extended Element Descriptor is shown in Figure 154. This Element Descriptor Type shall only be used
when an Element Descriptor spans across more than one Topology MultiRecord. Extended Element
Descriptors shall not be the children of other Element Descriptors.

If an Element Descriptor causes the maximum size of a Topology MultiRecord to be exceeded, then that
Element Descriptor is truncated so that the non-truncated portion of the Element Descriptor fits into the
Topology MultiRecord. The truncated portion of the Element Descriptor forms the contents of the Extended
Content field in an Extended Element Descriptor. That Extended Element Descriptor is the first Element
Descriptor in the next Topology MultiRecord. If the truncated portion of the Element Descriptor does not fit
into a single Topology MultiRecord, then two or more Extended Element Descriptors are required, each in
subsequent Topology MultiRecords.

An example is shown in Figure 151 where the Element Descriptor at index 4 is an Extended Element
Descriptor that extends the Element Descriptor at index 3. Element Descriptor 3 is the child of Element
Descriptor 0 and Element Descriptor 4 is not the child of any parent Element Descriptor.

Figure 154: Extended Element Descriptor

Byte Offset
Factory
Default

Description

00 01h
Type: This field indicates the type of the Element Descriptor. The Extended Element
Descriptor Type is 1h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The Extended
Element Descriptor Revision is 0h for this specification.

02 Impl Spec Length: This field indicates the length of the Extended Element Descriptor in bytes.

Length - 1:03 Impl Spec
Extended Content: This field extends the content of the Element Descriptor at the
immediately preceding index.

9.2.5.2 Upstream Connector Element Descriptor

The Upstream Connector Element Descriptor is shown in Figure 155 and is used to describe an Upstream
Connector (i.e., a connector through which a Requester communicates with the NVMe Storage Device).
Upstream Element Descriptors are always a parent and never a child.

Figure 155: Upstream Connector Element Descriptor

Byte
Offset

Factory
Default

Description

00 02h
Type: This field indicates the type of the Element Descriptor. The Upstream Connector
Element Descriptor Type is 2h.

NVM ExpressTM Management Interface Revision 1.1b

130

Figure 155: Upstream Connector Element Descriptor

Byte
Offset

Factory
Default

Description

01 00h
Revision: This field indicates the revision of the Element Descriptor. The Upstream
Connector Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the entire Upstream Connector Element
Descriptor in bytes.

03
Impl
Spec

Form Factor: This field indicates the Form Factor of the NVMe Storage Device. See
Figure 156 for a list of defined values.

04
Impl
Spec

Label Pointer: If the Upstream Connector has a label, then this field shall contain the
index of a Label Element Descriptor that contains the label. The value 0h indicates there
is no associated label.

06:05 00h Reserved

07
Impl
Spec

Maximum Auxiliary Power: This field specifies the maximum auxiliary power supply
requirements in 10 mW increments consumed by the NVMe Storage Device. A value of
0h indicates that auxiliary power is not used from this Upstream Connector.

09:08
Impl
Spec

Maximum Power: This field specifies the maximum power in Watts consumed by the
NVMe Storage Device.

10
Impl
Spec

Upstream Port Descriptor Count: This field indicates the number of Upstream Port
Descriptors associated with this Upstream Connector Element Descriptor. The permitted
range of values is 1 to 64.

Impl
Spec

Impl
Spec

Upstream Port Descriptor 0: This field contains the first Upstream Port Descriptor.

Impl
Spec

Impl
Spec

Upstream Port Descriptor 1: This field contains the second Upstream Port Descriptor in
this Upstream Connector Element Descriptor if Port Descriptor Count is greater than one,
otherwise this field is not present.

… … …

The value of the Form Factor field indicates the NVMe Storage Device’s form factor. Figure 156 lists the
NVMe Storage Device’s Form Factor values.

Figure 156: Form Factors

Value Description

0 Other – unknown

1 Integrated

2 to 15 Reserved

16 2.5” Form Factor – unknown

17 2.5” Form Factor – U.2 (SFF-8639) 15 mm

18 2.5” Form Factor – U.2 (SFF-8639) 7 mm

19 2.5” Form Factor – (SFF-TA-1001) 15 mm

20 2.5” Form Factor – (SFF-TA-1001) 7 mm

21 to 31 Reserved

32 CEM add in card – unknown

33 CEM add in card – Low Profile (HHHL)

34 CEM add in card – Standard Height Half Length (FHHL)

35 CEM add in card – Standard Height Full Length (FHFL)

36 to 47 Reserved

48 M.2 module – unknown

49 M.2 module – 2230

50 M.2 module – 2242

51 M.2 module – 2260

52 M.2 module – 2280

53 M.2 module – 22110

54 to 63 Reserved

NVM ExpressTM Management Interface Revision 1.1b

131

Figure 156: Form Factors

Value Description

64 BGA SSD – unknown

65 BGA SSD – 16 x 20mm (M.2 Type 1620)

66 BGA SSD – 11.5 x 13mm (M.2 Type 1113)

67 to 79 Reserved

80 Enterprise & Datacenter SSD Form Factor – unknown

81 1U Short Form Factor - (SFF-TA-1006) 5.9 mm

82 1U Short Form Factor - (SFF-TA-1006) 8 mm

83 1U Long Form Factor - (SFF-TA-1007) 9.5 mm

84 1U Long Form Factor - (SFF-TA-1007) 18 mm

85 3” Short Form Factor - (SFF-TA-1008) 7.5 mm

86 3” Short Form Factor - (SFF-TA-1008) 16.8 mm

87 3” Long Form Factor - (SFF-TA-1008) 7.5 mm

88 3” Long Form Factor - (SFF-TA-1008) 16.8 mm

89 to 239 Reserved

240 to 255 Vendor Specific

The Upstream Connector may have an associated label, such as silk-screened text on the printed circuit
board. If the Upstream Connector has a label, then the Label Pointer may contain the index of the
associated Label Element Descriptor.

The Upstream Connector Element Descriptor contains a list of the Upstream Port Descriptors that are ports
through which a Requester communicates with the NVMe Storage Device. Each Upstream Port Descriptor
has a type. The types defined in this specification are SMBus/I2C Upstream Port Descriptor and PCIe
Upstream Port Descriptor.

An SMBus/I2C Upstream Port Descriptor is shown in Figure 157. It contains a list of pointers to child
Element Descriptors whose SMBus/I2C port is directly connected to the Upstream Connector.

A PCIe Upstream Port Descriptor is shown in Figure 158. It indicates the starting and ending PCIe lane
numbers on the Upstream Connector that make up a PCIe Upstream Port. The PCIe Upstream Port
Descriptor contains a single pointer to a child Element Descriptor connected to this PCIe Upstream Port.
The Destination Port field of the PCIe Upstream Port Element Descriptor specifies which port of the child is
connected to this Upstream Connector. The Destination Port value is an index into the child Element
Descriptor’s list of Port Descriptors.

The PCIe lanes associated with a PCIe Upstream Connector may be organized as a single large port or
subdivided into multiple ports. Each of these ports is described with its own PCIe Upstream Port Descriptor.
The PCIe Upstream Port Descriptors may be listed in any order. A form factor specific mechanism, such
as the U.2 Dual Port Enable signal, may be used to determine which of the listed PCIe Upstream Port
Descriptors are currently applicable. These form factor specific mechanisms are outside the scope of this
specification.

For example, a U.2 NVMe Storage Device capable of running in either single-port mode or dual-port mode
based on the Dual Port Enable signal would have three PCIe Upstream Port Descriptors describing PCIe
ports on the following PCIe Lanes:

1. PCIe lanes 0 to 3 (single-port mode);
2. PCIe lanes 0 to 1 (dual-port mode); and
3. PCIe lanes 2 to 3 (dual-port mode).

In the example above, if the U.2 NVMe Storage Device is only capable of running in single-port mode, then
only the PCIe Upstream Port Descriptor describing the single-port mode (item 1 in the list above) shall be
included in the Upstream Connector Element Descriptor. And if the U.2 NVMe Storage Device is only
capable of running in dual-port mode, then only the two PCIe Upstream Port Descriptors describing the

NVM ExpressTM Management Interface Revision 1.1b

132

dual-port mode (items 2 and 3 in the list above) shall be included in the Upstream Connector Element
Descriptor.

In another example, consider a x16 CEM add-in card Upstream Connector that is subdivided into four x4
PCIe ports, also referred to as bifurcation. Each of these x4 PCIe Upstream Ports may connect to different
elements on the NVMe Storage Device. The Upstream Connector in this example shall contain four PCIe
Upstream Port Descriptors describing the four PCIe ports:

1. PCIe lanes 0 to 3;
2. PCIe lanes 4 to 7;
3. PCIe lanes 8 to 11; and
4. PCIe lanes 12 to 15.

Figure 157: SMBus/I2c Upstream Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of the Port Descriptor. The SMBus/I2C Port Descriptor
Type is 0h.

01
Impl
Spec

Length: This field indicates the length of the SMBus/I2C Port Descriptor in bytes.

02
Impl
Spec

Count: This field indicates the number of SMBus/I2C Pointers in the SMBus/I2C
Upstream Port Descriptor. The permitted range of values is 1 to 32.

03
Impl
Spec

SMBus/I2C Pointer 0: This field contains the child index of the first Element Descriptor
whose SMBus/I2C port is connected to this SMBus/I2C port.

04
Impl
Spec

SMBus/I2C Pointer 1: If Count is greater than one, then this field is present and contains
the child index of the second Element Descriptor whose SMBus/I2C port is connected to
this SMBus/I2C Upstream Port. If Count is not greater than one, then this field is not
present.

… … …

Figure 158: PCIe Upstream Port Descriptor

Byte
Offset

Factory
Default

Description

00 01h
Type: This field indicates the type of Upstream Port Descriptor. The PCIe Upstream Port
Descriptor Type is 1h.

01
Impl
Spec

Length: This field indicates the length of the PCIe Upstream Port Descriptor in bytes.

02
Impl
Spec

Starting Lane: This field indicates first PCIe lane (i.e., lane 0) of the port from the
Upstream Connector.

03
Impl
Spec

Ending Lane: This field indicates the ending PCIe lane of the port from the Upstream
Connector.

04
Impl
Spec

PCIe Pointer: This field contains the child index of the Element Descriptor whose PCIe
port is connected to this PCIe Upstream Port.

05
Impl
Spec

Destination Port: This field contains the index of the Port Descriptor in the child Element
Descriptor. If the child Element Descriptor has one PCIe upstream port (i.e., a PCIe Switch
Element Descriptor) this field shall be cleared to 0h.

… … …

9.2.5.3 Expansion Connector Element Descriptor

The Expansion Connector Element Descriptor is shown in Figure 159 and is used to describe the form
factor, label, and port configurations for Expansion Connectors on a Carrier. The Expansion Connector
Element Descriptor shall be a child Element Descriptor.

NVM ExpressTM Management Interface Revision 1.1b

133

Figure 159: Expansion Connector Element Descriptor

Byte
Offset

Factory
Default

Description

00 03h
Type: This field indicates the type of the Element Descriptor. The Expansion Connector
Element Descriptor Type is 3h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The Expansion
Connector Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the Expansion Connector Element Descriptor in
bytes.

03
Impl
Spec

Form Factor: This field indicates the Form Factor of the NVMe Storage Device FRU that
plugs into the Expansion Connector. Refer to Figure 156 for a list of defined values.

04
Impl
Spec

Label Pointer: If the Upstream Connector has a label, then this field shall contain the
index of a Label Element Descriptor that contains the label. The value 0h indicates there
is no associated label.

05
Impl
Spec

Expansion Connector Port Descriptor Count: This field indicates the number of
Expansion Port Descriptors associated with this Expansion Connector Element
Descriptor. The permitted range of values is 1 to 64.

Impl
Spec

Impl
Spec

Expansion Connector Port Descriptor 0: This field contains the first Expansion
Connector Port Descriptor.

Impl
Spec

Impl
Spec

Expansion Connector Port Descriptor 1: This field contains the second Expansion
Connector Port Descriptor in this Expansion Connector Descriptor if Expansion Connector
Port Descriptor Count is greater than one, otherwise this field is not present.

… … …

In a manner similar to the PCIe Upstream Connector, the Expansion Connector Element Descriptor’s PCIe
lanes may support one or more PCIe ports for connecting to external NVMe Storage Device FRUs. The
PCIe ports have a starting and ending PCIe lane number on the Expansion Connector that are determined
by the external NVMe Storage Device FRU’s form factor’s lane numbering.

The Expansion Connector Element Descriptor holds the list of Expansion Connector PCIe Port Descriptors.
Each PCIe port is described by an Expansion Connector PCIe Port Descriptor whose format is shown in
Figure 160. Parent Element Descriptors, such as Upstream Connectors and PCIe Switches, contain Port
Descriptors that point to Expansion Connectors. The Destination Port field of the parent Port Descriptor
contains an index to the specific Expansion Connector PCIe Port Descriptor instance to which the Port
Descriptor is connected. Each Expansion Connector PCIe Port Descriptor is the destination of exactly one
pointer from a parent Element Descriptor.

Figure 160: Expansion Connector PCIe Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of Expansion Connector Port Descriptor. The
Expansion Connector PCIe Port Descriptor Type is 0.

01
Impl
Spec

Length: This field indicates the length of the Expansion Connector PCIe Port Descriptor
in bytes.

02
Impl
Spec

Starting Lane: This field indicates first PCIe lane (i.e., lane 0) of the port on the Expansion
Connector PCIe Port Descriptor.

03
Impl
Spec

Ending Lane: This field indicates the ending PCIe lane of the port on the Expansion
Connector PCIe Port Descriptor.

9.2.5.4 Label Element Descriptor

The Label Element Descriptor is shown in Figure 161 and is used to store text strings in the VPD for Element
Descriptors that have a label. A Label Element Descriptor shall be a child Element Descriptor.

NVM ExpressTM Management Interface Revision 1.1b

134

Figure 161: Label Element Descriptor

Byte Offset
Factory
Default

Description

00 04h
Type: This field indicates the type of the Element Descriptor. The Label
Element Descriptor Type is 4h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The
Label Element Descriptor Revision is 0h for this specification.

02 Impl Spec
Length: This field indicates the length of the Label Element Descriptor in bytes
including the null termination.

Length - 1:03 Impl Spec
Label String: This field contains a null-terminated UTF-8 string used to
identify the parent Element Descriptor.

9.2.5.5 SMBus/I2C Mux Element Descriptor

The SMBus/I2C Mux Element Descriptor is shown in Figure 162 and is used to describe an SMBus/I2C
multiplexor element that connects a single upstream SMBus/I2C channel to zero or more downstream
SMBus/I2C channels. This Element Descriptor contains the address and capabilities of the SMBus/I2C Mux
followed by a list of SMBus/I2C Mux Channel Descriptors that describe SMBus/I2C Mux downstream
channel connections. The SMBus/I2C Mux shall be compatible with the industry standard PCA9542/45/48
family of SMBus/I2C multiplexors and may be extended to support ARP, error detection, and additional
downstream channels as defined below.

Figure 162: SMBus/I2C Mux Element Descriptor

Byte
Offset

Factory
Default

Description

00 05h
Type: This field indicates the type of the Element Descriptor. The SMBus/I2C Mux
Element Descriptor Type is 5h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The SMBus/I2C Mux
Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the SMBus/I2C Mux Element Descriptor in bytes.

03
E8h
or

E9h

SMBus/I2C Address Info: This field indicates the SMBus/I2C address and whether or
not ARP is supported.

Bit Description

7:1
SMBus/I2C Address: This field contains the 7-bit SMBus/I2C address. Refer
to Figure 15 for requirements.

0
ARP Capable: This bit is set to ‘1’ if SMBus ARP is supported, else it is
cleared to ‘0’. Refer to Figure 15 for requirements.

NVM ExpressTM Management Interface Revision 1.1b

135

Figure 162: SMBus/I2C Mux Element Descriptor

Byte
Offset

Factory
Default

Description

04
Impl
Spec

SMBus/I2C Capabilities: This field indicates the SMBus/I2C Mux capabilities.

Bit Description

7

Form Factor Reset: This bit is set to ‘1’ if all of the SMBus/I2C reset
mechanisms are supported as defined by the associated form factor
specification. This bit is cleared to ‘0’ if the form factor does not define SMBus
Reset or the NVMe Storage Device does not support all of the SMBus/I2C
reset mechanisms defined in the specification for the Form Factor in the Host
Connector Element Descriptor.

6
Packet Error Code (PEC) Support: This bit is set to ‘1’ if PEC is supported
by the SMBus/I2C Mux. This bit is cleared to ‘0’ if PEC is not supported.

5:2 Reserved

1:0

Maximum Speed: This field is set to the highest supported SMBus/I2C clock
speed by the SMBus/I2C Mux.

Value Description

0 100 kHz

1 400 kHz

2 1 MHz

3 Reserved

05
Impl
Spec

SMBus/I2C Mux Channel Descriptor Count: This field indicates the number of
downstream channels listed for this SMBus/I2C Mux. Each channel has a corresponding
SMBus/I2C Channel Descriptor in the list below. The permitted range of values is 1 to 64.
The value of this field may be less than the actual number of Channels implemented by
the SMBus/I2C Mux if the truncated SMBus/I2C Mux Channel Descriptors are not
connected to anything.

Impl
Spec

Impl
Spec

SMBus/I2C Mux Channel Descriptor 0: This field contains the first SMBus/I2C Mux
Channel Descriptor.

Impl
Spec

Impl
Spec

SMBus/I2C Mux Channel Descriptor 1: This field contains the second SMBus/I2C Mux
Channel Descriptor in this SMBus/I2C Mux Element Descriptor if SMBus/I2C Mux Channel
Descriptor Count is greater than one, otherwise this field is not present.

… … …

An SMBus/I2C Mux Channel Descriptor is shown in Figure 164. SMBus/I2C Mux Channel Descriptors that
are not connected to anything have a value 0h in the Count field and contain no SMBus/I2C Mux Channel
Descriptors. Unconnected SMBus/I2C Mux Channel Descriptors at the end of the list in Figure 162 may be
truncated unless they are needed to position the optional Packet Error Code (PEC).

Writing to an SMBus/I2C Mux configures the SMBus/I2C Mux and reading from an SMBus Mux returns its
current configuration. Figure 163 shows the protocol for reading and writing an SMBus/I2C Mux
configuration. The white background blocks are transmitted by a Management Controller and the grey
background blocks are transmitted in response by the SMBus/I2C Mux. The first byte sent or received is
the SMBus/I2C Mux address followed by one or more channel bytes. Each channel byte has eight channel
bits that are set to ‘1’ for connecting the corresponding downstream channel to the upstream channel or
cleared to ‘0’ for disconnecting the corresponding downstream channel from the upstream channel.

The first channel byte sent or received represents channels 0 to 7, the second channel byte sent or received
represents channels 8 to 15, and so on. Within each channel byte the least significant bit in the byte that is
transmitted or received represents the lowest numbered channel. Bits for channels exceeding the
SMBus/I2C Mux Channel Descriptor Count are reserved.

NVM ExpressTM Management Interface Revision 1.1b

136

Figure 163: SMBus/I2C Mux Read and Write Command Format

St
a

rt

E8h

Mux
Addr

0

A
ck

02h

Chan
7:0

A
ck

01h

Chan
15:8

A
ck

St
o

p

Write

St
a

rt

E9h

Mux
Addr

1

A
ck

02h

Chan
7:0

A
ck

01h

Chan
15:8

N
A

C
K

St
o

p

Read

The minimum number of channel bytes are read or written to reach all the channels specified in the
SMBus/I2C Mux Channel Descriptor Count field. Thus, SMBus/I2C Muxes with one to eight downstream
channels would have one channel byte while an SMBus/I2C Mux with 57 downstream channels would have
8 channel bytes. In the example shown in Figure 163, the SMBus/I2C Mux has 16 downstream channels
that require 2 bytes. In this example, channels 1 and 8 are being connected while all others are being
disconnected.

An SMBus/I2C Mux may also protect communications with an optional Packet Error Code (PEC) that is
appended after sufficient channel bytes have been read or written to satisfy the SMBus/I2C Mux Channel
Descriptor Count value. If the write command includes a PEC byte and the PEC byte is incorrect, then the
entire command shall be ignored by the SMBus/I2C Mux, otherwise the actions associated with the write
command take place after the STOP condition is received. Write commands with insufficient channel bytes
shall be accepted with truncated channel bytes having an implied value of zero. Bytes beyond the size
needed for the number of channels and PEC are reserved.

Multiple downstream channels may be simultaneously connected to the upstream channel to bridge them
together. All downstream channels shall be disconnected when the NVMe Storage Device is powered off
(refer to Figure 143) or by an SMBus Reset (refer to section 9.3.4). Connecting or disconnecting channels
while they are active is strongly discouraged and results in undefined behavior.

Figure 164: SMBus/I2C Mux Channel Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of the Descriptor. The SMBus/I2C Mux Channel
Descriptor Type is 0h.

01
Impl
Spec

Length: This field indicates the length of the SMBus/I2C Mux Channel Descriptor in bytes.

02
Impl
Spec

Count: This field indicates the number of SMBus/I2C Pointers in the SMBus/I2C Mux
Channel Descriptor. The permitted range of values is 0 to 32.

03
Impl
Spec

SMBus/I2C Pointer 0: This field contains the child index of the first Element Descriptor
whose SMBus/I2C is connected to this channel.

04
Impl
Spec

SMBus/I2C Pointer 1: If Count is greater than one, then this field is present and contains
the child index of another Element Descriptor whose SMBus/I2C is connected to this
channel. If Count is not greater than one, then this field is not present.

… … …

9.2.5.6 PCIe Switch Element Descriptor

The PCIe Switch Element Descriptor is shown in Figure 165 and is used to describe a PCIe switch. This
Element Descriptor is the child of a single parent and the parent of one or more children.

Figure 165: PCIe Switch Element Descriptor

Byte
Offset

Factory
Default

Description

00 06h
Type: This field indicates the type of the Element Descriptor. The PCIe Switch Element
Descriptor Type is 6h.

NVM ExpressTM Management Interface Revision 1.1b

137

Figure 165: PCIe Switch Element Descriptor

Byte
Offset

Factory
Default

Description

01
Impl
Spec

Revision: This field indicates the revision of the Element Descriptor. The PCIe Switch
Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the PCIe Switch Element Descriptor in bytes.

03
Impl
Spec

Upstream Switch Port Descriptor: This field contains the PCIe Switch Port Descriptor
that describes the upstream switch port.

Impl
Spec

Impl
Spec

Downstream Switch Port Descriptor Count: This field indicates the number of PCIe
Port Descriptors associated with downstream switch ports.

Impl
Spec

Impl
Spec

Downstream Switch Port Descriptor 0: This field contains the PCIe Switch Port
Descriptor associated with the first downstream port.

Impl
Spec

Impl
Spec

Downstream Switch Port Descriptor 1: This field contains the PCIe Switch Port
Descriptor associated with the second downstream port if Downstream Switch Port
Descriptor Count is greater than one, otherwise this field is not present.

… … …

The PCIe Switch Element Descriptor consists of a list of PCIe Switch Port Descriptors. There is an
Upstream Switch Port Descriptor that describes the upstream port and is the child of exactly one parent
Element Descriptor. A variable length list of Downstream Switch Port Descriptors describes the downstream
ports.

The format of a PCIe Switch Port Descriptor is shown in Figure 166. It describes the PCIe port’s supported
PCIe link speeds, PCIe maximum link width, reference clock capabilities, and PCIe Port Number.
Downstream ports also have a child Element Descriptor and its Destination Port index value.

Figure 166: PCIe Switch Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of Port Descriptor. The PCIe Switch Port Descriptor
Type is 0.

01
Impl
Spec

Length: This field indicates the length of the PCIe Switch Port Descriptor in bytes.

02
Impl
Spec

PCIe Link Speed: This field indicates a bit vector of link speeds supported by the PCIe
port.

Bit Description

7:4 Reserved

3 Set to ‘1’ if the PCIe link supports 16 GT/s, otherwise cleared to ‘0’.

2 Set to ‘1’ if the PCIe link supports 8.0 GT/s, otherwise cleared to ‘0’.

1 Set to ‘1’ if the PCIe link supports 5.0 GT/s, otherwise cleared to ‘0’.

0 Set to ‘1’ if the PCIe link supports 2.5 GT/s, otherwise cleared to ‘0’.

NVM ExpressTM Management Interface Revision 1.1b

138

Figure 166: PCIe Switch Port Descriptor

Byte
Offset

Factory
Default

Description

03
Impl
Spec

PCIe Maximum Link Width: The maximum PCIe link width for this port.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

04
Impl
Spec

RefClk Capability: This field contains a bit vector that specifies the PCIe clocking modes
supported by the port.

Bit Description

7:4 Reserved

3
Set to ‘1’ for upstream ports that automatically use RefClk if provided and
otherwise uses SRIS, otherwise, cleared to ‘0’. Reserved for downstream
ports.

2
Set to ‘1’ if the PCIe port supports Separate RefClk with SSC (SRIS),
otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe port supports Separate RefClk with no SSC (SRNS),
otherwise cleared to ‘0’.

0 Set to ‘1’ if the PCIe port supports common RefClk, otherwise cleared to ‘0’.

05
Impl
Spec

Port Number: This field indicates the PCIe Port Number, as defined by the PCI Express
Base Specification, associated with this port.

06
Impl
Spec

PCIe Pointer: In downstream ports this field contains the child index of the Element
Descriptor that has a PCIe port connected to this PCIe port. In upstream ports this field is
cleared to 0h.

07
Impl
Spec

Destination Port: This field contains the index of the Port Descriptor in the child Element
Descriptor. If the child Element Descriptor has one PCIe upstream port (i.e., a PCIe Switch
Element Descriptor), this field shall be cleared to 0h.

9.2.5.7 NVM Subsystem Element Descriptor

The NVM Subsystem Element Descriptor is shown in Figure 167 and is used to describe an NVM
Subsystem contained in the NVMe Storage Device.

Figure 167: NVM Subsystem Element Descriptor

Byte
Offset

Factory
Default

Description

00 07h
Type: This field indicates the type of the Element Descriptor. The NVM Subsystem
Element Descriptor Type is 7h.

NVM ExpressTM Management Interface Revision 1.1b

139

Figure 167: NVM Subsystem Element Descriptor

Byte
Offset

Factory
Default

Description

01 00h
Revision: This field indicates the revision of the Element Descriptor. The NVM Subsystem
Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the NVM Subsystem Element Descriptor in bytes.

03
3Ah
or

3Bh

SMBus/I2C Address Info: If the NVM Subsystem supports an MCTP over SMBus/I2C
port, then this field indicates the SMBus/I2C address for MCTP over SMBus/I2C port and
whether or not SMBus ARP is supported; otherwise this field has a value of 0h.

Bit Description

7:1
SMBus/I2C Address: This field contains the 7-bit SMBus/I2C address.
Refer to Figure 15 for requirements.

0
ARP Capable: This bit is set to ‘1’ if SMBus ARP is supported, else it is
cleared to ‘0’. Refer to Figure 15 for requirements.

04
Impl
Spec

SMBus/I2C Capabilities: If the NVM Subsystem supports an SMBus/I2C port then this
field indicates the SMBus/I2C capabilities; otherwise this field has a value of 0h.

Bit Description

7

Reset: This bit is set to ‘1’ if all of the SMBus/I2C reset mechanisms are
supported as defined by the associated form factor specification. This bit is
cleared to ‘0’ if the form factor does not define SMBus Reset or the NVMe
Storage Device does not support all of the SMBus/I2C reset mechanisms
defined by the specification for the Form Factor in the Host Connector
Element Descriptor.

6:2 Reserved

1:0

Maximum Speed: This field is set to the highest supported SMBus/I2C
clock speed.

Value Description

0 100 kHz

1 400 kHz

2 1 MHz

3 Reserved

05
Impl
Spec

NVM Subsystem Port Descriptor Count: This field indicates the number of NVM
Subsystem Port Descriptors associated with the NVM Subsystem. The permitted range of
values is 1 to 64.

Impl
Spec

Impl
Spec

NVM Subsystem Port Descriptor 0: This field contains the NVM Subsystem Port
Descriptor associated with the first NVM Subsystem port.

Impl
Spec

Impl
Spec

NVM Subsystem Port Descriptor 1: This field contains the NVM Subsystem Port
Descriptor associated with the second NVM Subsystem port if NVM Subsystem Port
Descriptor Count is greater than one, otherwise this field is not present.

… … …

Each upstream port is described by an NVM Subsystem Port Descriptor as shown in Figure 168. It
describes the PCIe port’s supported PCIe link speeds, PCIe max link width, RefClk capabilities, and PCIe
Port Identifier. Each NVM Subsystem Port Descriptor should be the child of exactly one parent Element
Descriptor.

Figure 168: NVM Subsystem Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of an NVM Subsystem Port Descriptor. The NVM
Subsystem Port Descriptor Type is 0.

NVM ExpressTM Management Interface Revision 1.1b

140

Figure 168: NVM Subsystem Port Descriptor

Byte
Offset

Factory
Default

Description

01
Impl
Spec

Length: This field indicates the length of the NVM Subsystem Port Descriptor in bytes.

02
Impl
Spec

PCIe Link Speed: This field indicates a bit vector of link speeds supported by the PCIe
port.

Bit Description

7:4 Reserved

3 Set to ‘1’ if the PCIe link supports 16 GT/s, otherwise cleared to ‘0’.

2 Set to ‘1’ if the PCIe link supports 8.0 GT/s, otherwise cleared to ‘0’.

1 Set to ‘1’ if the PCIe link supports 5.0 GT/s, otherwise cleared to ‘0’.

0 Set to ‘1’ if the PCIe link supports 2.5 GT/s, otherwise cleared to ‘0’.

03
Impl
Spec

PCIe Maximum Link Width: The maximum PCIe link width for this NVM Subsystem port.

Value Description

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

04
Impl
Spec

RefClk Capability: This field contains a bit vector that specifies the PCIe clocking modes
supported by the port.

Bit Description

7:4 Reserved

3
Set to ‘1’ if the device automatically uses RefClk if provided and otherwise
uses SRIS, otherwise cleared to ‘0’.

2
Set to ‘1’ if the PCIe link supports Separate RefClk with SSC (SRIS),
otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports Separate RefClk with no SSC (SRNS),
otherwise cleared to ‘0’.

0 Set to ‘1’ if the PCIe link supports common RefClk, otherwise cleared to ‘0’.

05
Impl
Spec

Port Identifier: This field contains the NVMe-MI Port Identifier associated with this port.

9.2.5.8 Vendor-Specific Element Descriptors

The Vendor-Specific Element Descriptor is shown Figure 169.

NVM ExpressTM Management Interface Revision 1.1b

141

Figure 169: Vendor-Specific Element Descriptors

Byte
Offset

Factory
Default

Description

00
Impl
Spec

Type: This field indicates the type of the Element Descriptor. Vendor-Specific Types have
a value in the range of F0h to FFh.

01
Impl
Spec

Revision: This field indicates the revision of the Element Descriptor. The Vendor-Specific
Element Descriptor Revision is determined by the Vendor.

02
Impl
Spec

Length: This field indicates the length of the Vendor-Specific Element Descriptor in bytes.

04:03
Impl
Spec

PCI Vendor ID: This field indicates PCI-SIG assigned vendor identifier.

Impl
Spec

Impl
Spec

Vendor Specific: Vendor-specific information.

9.3 Reset

This section describes the reset architecture defined by this specification that are applicable to NVMe
Storage Devices and NVMe Enclosures.

9.3.1 NVM Subsystem Reset

An NVM Subsystem Reset is initiated under the conditions outlined in the NVM Express specification (e.g.,
when main power is applied to the NVM Subsystem). In addition to these conditions, if NVM Subsystem
Reset is supported, then it may be initiated by processing a Reset command.

An NVM Subsystem Reset initiated via the out-of-band mechanism may interfere with host software. A
Management Controller should coordinate with the host. Coordination between a Management Controller
and a host are outside the scope of this specification.

When an NVM Subsystem Reset is initiated, the entire NVM Subsystem is reset. This includes all NVM
Subsystem ports (PCIe and SMBus/I2C), Management Endpoints, and Controller Management Interfaces.
All state is returned to its default condition.

9.3.2 Controller Level Reset

A Controller Level Reset is initiated under the conditions outlined in the NVM Express specification.

A Controller Level Reset initiated via the out-of-band mechanism may interfere with host software. A
Management Controller should coordinate with the host. Coordination between a Management Controller
and a host are outside the scope of this specification.

The actions performed on a Controller Level Reset are outlined in the NVM Express specification. A
Controller Level Reset has no effect on the Controller Management Interface associated with that
Controller, the PCI Express port associated with that Controller, or a Management Endpoint associated
with that port. A Controller Level Reset also does not stop the servicing of the Management Interface
Command Set or NVM Express Admin Command Set commands that target that Controller (i.e., the NVM
Express Admin Command Set is still available even though the NVMe Controller may be disabled or held
in reset) or Control Primitives. A Controller Level Reset may affect PCIe Command Set commands being
processed on that Controller (refer to section 9.1). If a PCIe Command is affected, then the command is
completed with status PCIe Inaccessible.

A Controller Level Reset that causes a new firmware image to activate is considered a special event and
may impact the operation of the Controller Management Interface associated with one or more Controllers,

NVM ExpressTM Management Interface Revision 1.1b

142

servicing of NVMe-MI Messages, or Management Endpoints within an NVM Subsystem. This impact is
unspecified and vendor specific. The Management Controller and host should coordinate the activation of
a new firmware image. Coordination between a Management Controller and a host are outside the scope
of this specification.

9.3.3 Management Endpoint Reset

A Management Endpoint reset is initiated under the conditions outlined in the MCTP Base Specification or
the associated MCTP transport binding specifications.

In addition to these conditions, a Management Endpoint associated with a PCI Express port is reset when
the PCI Express port is in a PCI Express conventional reset state.

When a Management Endpoint Reset is initiated, the state of that Management Endpoint is returned to its
default condition and any commands associated with that Management Endpoint being processed are
aborted. A reset of a Management Endpoint in an NVM Subsystem shall not affect any other Management
Endpoint in the NVM Subsystem or any other NVM Subsystem entity. Note that for implementations
compliant to version 1.1 and earlier of this specification, during a PCI Express conventional reset of a PCIe
Management Endpoint, MCTP accesses may not be supported on other PCIe or SMBus/I2C Management
Endpoints in the NVM Subsystem.

9.3.4 SMBus Reset

All SMBus/I2C elements should support the recommendation for SMBus reset when the SMBus/I2C clock
is low for longer than tTIMEOUT,MIN.

Some form factors may also specify one or more separate SMBus reset mechanisms. If such mechanisms
are supported by an NVM Subsystem, then the NVM Subsystem shall propagate the reset to all SMBus/I2C
elements on the NVM Subsystem and translate the reset, if needed, to Expansion Connector form factors.

If the SMBus/I2C element on an NVM Subsystem is in master mode, then an SMBus Reset shall cause it
to generate a STOP condition as defined in the SMBus specification within or after the current data byte in
the transfer process. The NVM Subsystem shall remain idle on SMBus for the remainder of the SMBus
Reset assertion even if other SMBus/I2C elements attempt to address it. An NVM Subsystem shall be ready
to receive a START condition as defined in the SMBus Specification within 10 ms after SMBus Reset de-
assertion.

An SMBus Reset shall not modify ARP assigned addresses. Management Controllers may send an ARP
reset after the SMBus Reset if addresses need to be reinitialized.

An SMBus Reset shall cause SMBus/I2C Management Endpoints to drop the MCTP packet in flight. If the
MCTP Command Servicing State is in Transmit, then it shall change to Idle as if transmit completed. An
SMBus Reset does not reset other MCTP state information or abort NVMe-MI Message Servicing.

9.4 Security

The Responder may respond with a Response Message Status of Access Denied in an Error Response.
While a drive is in an unlocked state, this mechanism shall not be used for the Management Interface
Command Set or the NVMe Admin Command Set.

The commands and the times at which such a response is generated is vendor specific. The mechanism
used to lock a drive is outside the scope of this specification.

NVM ExpressTM Management Interface Revision 1.1b

143

Appendix A – Technical Note: NVM Express Basic Management
Command

This appendix describes the NVMe Basic Management Command and is included here for informational
purposes only. The NVMe Basic Management Command is not formally a part of the NVMe-MI specification
and its features are not tested by the NVMe Compliance program. No further enhancements to the NVMe
Basic Management Command are planned, and it is strongly recommended that any consumers of the
NVMe Basic Management Command transition to using the standard NVMe-MI protocol.

This specification utilizes Management Component Transport Protocol (MCTP) messages. The NVMe
Basic Management Command does not use MCTP. Support for the NVMe Basic Management Command
is optional.

This command does not provide any mechanism to modify or configure the NVMe device. Such features
use the more capable MCTP protocol rather than this command’s simpler SMBus Block Read. The host
may reuse existing SMBus or FRU Information Device read subroutines for this read and is not required to
switch the SMBus between master and slave modes as in MCTP.

The block read protocol is specified by the SMBus specification which is available online at www.smbus.org.
First slave address write and command code bytes are transmitted by the host, then a repeated start and
finally a slave address read. The host keeps clocking as the drive then responds in slave mode with the
selected data. The command code is used as a starting offset into the data block shown in Figure 149, like
an address on a serial EEPROM.

The offset value increments on every byte read and is reset to zero on a stop condition. A read command
without a repeated start is permissible and starts transmission from offset zero. Reading more than the
block length with an I2C read is also permissible and these reads continue into the first byte in the next
block of data. The Packet Error Code (PEC) accumulates all bytes sent or received after the start condition
and the current value is inserted whenever a PEC field is reached.

Blocks of data are packed sequentially. The first 2 blocks are defined by the NVMe-MI workgroup. The first
block is the dynamic host health data. The second block includes the Vendor ID (VID) and serial number
of the drive. Additional blocks of data may be defined by the owner of the VID. Reading past the end of the
vendor defined blocks shall return zeros.

The SMBus slave address to read this data structure defaults to D4h. After the Management Controller
successfully assigns the MCTP UDID to D4h using ARP, then the Basic Management Command may track
and respond to slave reads at future ARP assigned MCTP addresses. This method of changing the Basic
Command address is optional and does not persist through power cycles. Interleaved MCTP and block
read traffic is permissible and neither command type shall disturb the state of the other commands.

Here are a few example reads from an NVMe drive at 30 °C, no alarms, VID=1234h, serial number is
AZ123456 using the format defined in Figure 149. Host transmissions are shown in white blocks and drive
responses are shown in grey blocks:

Example 1: SMBus block read of the drive’s status (status flags, SMART warnings, temperature):

St
ar

t

D4h

Addr W

A
ck

00h

Cmd
Code

A
ck

BFh

Status
Flags

A
ck

FFh

SMART
Warnings

A
ck

1Eh

Temp

A
ck

01h

Drive Life
Used

A
ck

3Ch

Warning
Temp

A
ck

08h

Power
State

A
ck

10h

PEC

N
A

C
K

St
o

p

R
e

st
ar

t

D5h

Addr R

A
ck

06h

Length

A
ck

Example 2: SMBus block read of the drive’s static data (VID and serial number):

http://www.smbus.org/

NVM ExpressTM Management Interface Revision 1.1b

144

St
ar

t

D4h

Addr W
A

ck

08h

Cmd
Code

A
ck

12h

VID

A
ck

34h

VID

A
ck

41h

Serial #
 A

A
ck

5Ah

Serial #
 Z

A
ck

31h

Serial #
 1

A
ck

32h

Serial #
 2

A
ck

33h

Serial #
 3

A
ck

R
e

st
ar

t

D5h

Addr R

A
ck

16h

Length

A
ck

35h

Serial #
 5

A
ck

36h

Serial #
 6

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

34h

Serial #
 4

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

DAh

PEC
N

A
C

K

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

St
o

p

Example 3: SMBus send byte to reset Arbitration bit:

St
ar

t

D4h

Addr W

A
ck

FFh

Cmd
Code

A
ck

St
o

p

Example 4: I2C read of status and vendor content, I2C allows reading across SMBus block boundaries:

St
ar

t

D4h

Addr W

A
ck

00h

Cmd
Code

A
ck

16h

Length

A
ck

34h

VID

A
ck

41h

Serial #
 A

A
ck

5Ah

Serial #
 Z

A
ck

31h

Serial #
 1

A
ck

32h

Serial #
 2

A
ck

33h

Serial #
 3

A
ck

R
e

st
ar

t

D5h

Addr R

A
ck

35h

Serial #
 5

A
ck

36h

Serial #
 6

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

34h

Serial #
 4

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

B0h

PEC

N
A

C
K

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

20h

Serial #

A
ck

St
o

p

BFh

Status
Flags

A
ck

FFh

SMART
Warnings

A
ck

1Eh

Temp

A
ck

01h

Drive Life
Used

A
ck

3Ch

Warning
Temp

A
ck

08h

Power
State

A
ck

10h

PEC

A
ck

06h

Length

A
ck

12h

VID

A
ck

20h

Serial #

A
ck

The SMBus Arbitration bit may be used for simple arbitration on systems that have multiple drives on the
same SMBus channel without ARP or muxes to separate them. To use this mechanism, the host follows
this 3 step process to handle collisions for the same slave address:

1. The host does an SMBus byte write to send byte FFh which clears the SMBus Arbitration bit on all
listening Management Endpoints at this slave address;

2. The host does an I2C read starting from offset 0h and continuing at least through the serial number
in the second block. The drive transmitting a ‘0’ when other drives sent a ‘1’ wins arbitration and
sets the arbitration bit to ‘1’ upon read completion to give other drives priority on the next read;

3. Repeat step 2 until all drives are read, host receiving the Arbitration bit as a ‘1’ indicates loop is
done; and

4. Sort the responses by serial number since the order of drive responses varies with health status
and temperatures.

Be careful that there are no short reads of similar data between steps 1 and 3. If the read data is exactly
the same on multiple drives, then all these drives set the arbitration bit. After that a new send byte FFh is
required to restart the process.

NVM ExpressTM Management Interface Revision 1.1b

145

The logic levels were intentionally inverted to normally high in the bytes 1 and 2. This is an additional
mechanism to assist systems that do not have ARP or muxes. Since ‘0’ bits win arbitration on SMBus, a
drive with an alarm condition is prioritized over healthy drives in the above arbitration scheme. A single I2C
read of byte of two bytes starting at offset one from an array of drives detects alarm conditions. Note that
only one drive with an alarm may be reliably detected because drives without the same alarm stop
transmitting once the bus contention is detected. For this reason the bits are sorted in order of priority.
Continuing to read further provides the serial number of the drive that had the alarm.

Figure 170: Subsystem Management Data Structure

Command
Code

Offset
(byte)

Description

0

00
Length of Status: Indicates number of additional bytes to read before encountering PEC.
This value should always be 6 (06h) in implementations of this version of the spec.

01

Status Flags (SFLGS): This field indicates the status of the NVM Subsystem.

SMBus Arbitration – Bit 7 is set to ‘1’ after an SMBus block read is completed all the way
to the stop bit without bus contention and cleared to ‘0’ if an SMBus Send Byte FFh is
received on this SMBus slave address.

Drive Not Ready – Bit 6 is set to ‘1’ when the subsystem is not capable of processing NVMe
management commands, and the rest of the transmission may be invalid. If cleared to ‘0’,
then the NVM Subsystem is fully powered and ready to respond to management commands.
This logic level intentionally identifies and prioritizes powered up and ready drives over their
powered off neighbors on the same SMBus channel.

Drive Functional – Bit 5 is set to ‘1’ to indicate an NVM Subsystem is functional. If cleared
to ‘0’, then there is an unrecoverable failure in the NVM Subsystem and the rest of the
transmission may be invalid. Note that this bit may default to ‘0’ after reset and transition to
‘1’ after the NVM Subsystem has completed initialization and this case should not be
considered an error.

Reset Not Required - Bit 4 is set to ‘1’ to indicate the NVM Subsystem does not need a reset
to resume normal operation. If cleared to ‘0’, then the NVM Subsystem has experienced an
error that prevents continued normal operation. A Controller Level Reset is required to
resume normal operation.

Port 0 PCIe Link Active - Bit 3 is set to ‘1’ to indicate the first port’s PCIe link is up (i.e., the
Data Link Control and Management State Machine is in the DL_Active state). If cleared to
‘0’, then the PCIe link is down.

Port 1 PCIe Link Active - Bit 2 is set to ‘1’ to indicate the second port’s PCIe link is up. If
cleared to ‘0’, then the second port’s PCIe link is down or not present.

Bits 1:0 shall be set to ‘1’.

02

SMART Warnings: This field shall contain the Critical Warning field (byte 0) of the NVMe
SMART / Health Information log. Each bit in this field shall be inverted from the NVMe
definition (i.e., the management interface shall indicate a ‘0’ value while the corresponding
bit is ‘1’ in the log page). Refer to the NVM Express specification for bit definitions.

If there are multiple Controllers in the NVM Subsystem, the management endpoint shall
combine the Critical Warning field from every Controller such that a bit in this field is:

• Cleared to ‘0’ if any Controller in the subsystem indicates a critical warning for that
corresponding bit.

• Set to ‘1’ if all Controllers in the NVM Subsystem do not indicate a critical warning
for the corresponding bit.

03

Composite Temperature (CTemp): This field indicates the current temperature in degrees
Celsius. If a temperature value is reported, it should be the same temperature as the
Composite Temperature from the SMART log of hottest Controller in the NVM Subsystem.
The reported temperature range is vendor specific, and shall not exceed the range -60 °C to
+127°C. The 8 bit format of the data is shown below.

NVM ExpressTM Management Interface Revision 1.1b

146

Figure 170: Subsystem Management Data Structure

Command
Code

Offset
(byte)

Description

This field should not report a stale temperature, which means that it was sampled more than
5 s prior. If recent data is not available, the Management Endpoint should indicate a value of
80h for this field.

Value Description

00h to 7Eh Temperature is measured in degrees Celsius (0 °C to 126 °C)

7Fh 127 °C or higher

80h No temperature data or temperature data is more the 5 s old.

81h Temperature sensor failure

82h to C3h Reserved

C4h Temperature is -60 °C or lower

C5h to FFh
Temperature measured in degrees Celsius is represented in two’s
complement (-1 °C to -59 °C)

04

Percentage Drive Life Used (PDLU): Contains a vendor specific estimate of the percentage
of NVM Subsystem NVM life used based on the actual usage and the manufacturer’s
prediction of NVM life. If an NVM Subsystem has multiple Controllers the highest value is
returned. A value of 100 indicates that the estimated endurance of the NVM in the NVM
Subsystem has been consumed, but may not indicate an NVM Subsystem failure. The value
is allowed to exceed 100. Percentages greater than 254 shall be represented as 255. This
value should be updated once per power-on hour and equal the Percentage Used value in
the NVMe SMART Health Log Page.

05

Current Over Temperature Warning Threshold (Optional): This field indicates the
composite temperature over temperature warning threshold in degrees Celsius. This is
intended to initially match the temperature reported in the WCTEMP field in the NVMe Identify
Controller data structure. If the Over Temperature threshold for Composite Temperature is
modified with set features, then the most recent value should be reported. The data format
should match the same single byte format as the CTemp field with a range from -60 °C to
127 °C. A value of zero means that this field is not reported or that the threshold is set to
0 °C.

06

Current Power (Optional): This field reports the current NVM subsystem power
consumption. If both bit mapped fields are zero it means that this field is not reported.

Bit Definition

7
NVM Subsystem Idle (NVMSI): This bit is set to ‘1’ when the NVM
subsystem is idle and has been idle for at least 5 s. Refer to the NVMe Idle
Power (IDLP) definition.

6:0

NVM Subsystem Power (NVMSP): This field reports the ceiling function of
the power consumed by the NVM subsystem in Watts. If this value is greater
than 127 W, then 127 W is reported.

Power reported by the NVM subsystem is determined in the following
manner. If NVMSI bit is set to ‘1’, then the value returned is equal to that
reported in the Idle Power (IDLP) field in the Power State Descriptor Data
Structure for the corresponding NVMe power state. If NVMSI bit is cleared
to ‘0’, then the value returned is equal to that reported in the Active Power
Workload (APW) field in the Power State Descriptor Structure for the
corresponding NVMe power state. The Maximum Power (MP) field value is
substituted for IDLP or APW if these are not for reported in the Power State
Descriptor Structure for the current NVMe power state.

07
PEC: An 8 bit CRC calculated over the slave address, command code, second slave
address, and returned data. The algorithm is defined in the SMBus specification.

8 08
Length of identification: Indicates number of additional bytes to read before encountering
PEC. This value should always be 22 (16h) in implementations of this version of the spec.

NVM ExpressTM Management Interface Revision 1.1b

147

Figure 170: Subsystem Management Data Structure

Command
Code

Offset
(byte)

Description

10:09
Vendor ID: The 2 byte vendor ID, assigned by the PCI-SIG. Should match VID in the Identify
Controller command response. Note the MSB is transmitted first.

11:30
Serial Number: 20 characters that match the serial number in the NVMe Identify Controller
command response. Note the first character is transmitted first.

31
PEC: An 8 bit CRC calculated over the slave address, command code, second slave
address, and returned data. The algorithm is defined in the SMBus specification.

32+ 32:255
Vendor Specific – These data structures shall not exceed the maximum read length of 255
specified in the SMBus version 3 specification. Preferably their lengths are not greater than
32 for compatibility with SMBus 2.0.

NVM ExpressTM Management Interface Revision 1.1b

148

Appendix B – Example MCTP Messages & Message Integrity Check

Below are artificial MCTP Messages with their corresponding Message Integrity values. Figure 173 shows
an example where the message is not an even number of dwords and the MIC spans Dwords 7 and 8. The
contents of the messages listed below should be used for reference and do not correspond to valid MCTP
messages.

Figure 171: MIC Example 1 – 32 Bytes of 0’s

 3 2 1 0

Dword 0 00h 00h 00h 00h

`.

Dword 7 00h 00h 00h 00h

Dword 8 (MIC) 8Ah 91h 36h AAh

Figure 172: MIC Example 2 – 32 Bytes of 1’s

 3 2 1 0

Dword 0 FFh FFh FFh FFh

...

Dword 7 FFh FFh FFh FFh

Dword 8 (MIC) 62h A8h ABh 43h

Figure 173: MIC Example 3 – 30 Incrementing Bytes
from 00h to 1Dh

 3 2 1 0

Dword 0 03h 02h 01h 00h

...

Dword 7 (MIC) 92h D7h 1Dh 1Ch

Dword 8 (MIC) <unused> 1Eh 05h

Figure 174: MIC Example 4 – 32 Decrementing Bytes
from 1Fh to 00h

 3 2 1 0

Dword 0 1Ch 1Dh 1Eh 1Fh

...

Dword 7 00h 01h 02h 03h

NVM ExpressTM Management Interface Revision 1.1b

149

Figure 174: MIC Example 4 – 32 Decrementing Bytes
from 1Fh to 00h

 3 2 1 0

Dword 8 (MIC) 11h 3Fh DBh 5Ch

NVM ExpressTM Management Interface Revision 1.1b

150

Appendix C – Example NVMe-MI Messages over SMBus/I2C

This section contains example NVMe-MI Messages over SMBus/I2c between a Management Controller
(e.g., a Baseboard Management Controller) and a Management Endpoint. The Request Messages are sent
from the Management Controller to the Management Endpoint and the corresponding Response Messages
are sent back from the Management Endpoint to the Management Controller.

The examples assume the following:

• Management Endpoint SMBus/I2C address is 3Ah;

• Management Controller SMBus/I2C address is 20h;

• Management Endpoint MCTP Endpoint ID is 0, examples only use SMBus/I2C address;

• Management Controller MCTP Endpoint ID is 0, examples only use SMBus/I2C address;

• MCTP Transmission Unit Size is 64 bytes;

• NVMe Storage Device Composite Temperature (CTEMP) is 30 °C;

• NVMe Storage Device Controller ID is 1; and

• NVMe Storage Device Serial Number is AZ123456.

The first 4 bytes and the last byte of each packet (shown in orange in the examples below) are defined by
the MCTP SMBus/I2C Transport Binding Specification. Bytes 4 to 7 of each packet and the Message
Integrity Check (green) are defined by the MCTP Base Specification. The CRC-32C algorithm and the
NVMe-MI Message Header (blue) are defined in section 3.1.1.1. Management Controller transmission
bytes are shown in white blocks and Management Endpoint transmission bytes are shown in grey blocks.
All messages are sent in SMBus master mode and received in slave mode so both sides must reconfigure
SMBus between commands and responses.

Example 1: In this example, a Management Controller issues an Identify Command to read the Serial
Number (bytes 23:04 of the Identify Controller Data Structure) of an NVMe Storage Device. The NVMe
Storage Device’s response is shown in the Example 2.

The Request Message is longer than the default 64-byte MCTP Transmission Unit Size and thus spans two
MCTP packets. The NVMe-MI Message Type (NMIMT) field specifies that this is an NVMe Admin
Command. The NVMe Opcode 06h specifies that this is an Identify Command. This NVMe Opcode and the
required values for Dwords 1 to 15 are defined in the NVM Express specification for the Identify Command.
The Data Offset of 00000004h skips the first 4 bytes of the Identify Controller Data Structure response. The
Data Length of 00000014h limits the response to 20 bytes.

Notice that the blue header is only present in the first packet of a message. The MCTP packet sequence
number is incremented from 0 for the first packet to 1 for the second packet. The SMBus PEC is calculated
per packet and includes every byte sent. The Message Integrity Check is calculated across both packet
payloads but skips all orange and green bytes. The value for SMBus Length field (Byte 2) is the number of
bytes following it in the packet, not including the SMBus PEC field per the SMBus Specification.

NVM ExpressTM Management Interface Revision 1.1b

151

St
ar

t

3Ah

SSD
Addr

0

A
ck

0Fh

Protocol=
MCTP

A
ck

06h

Opcode=
Identify

A
ck

03h

Flags=
Len+ Off

A
ck

01h

Cntrl Id
LSB

A
ck

00h

Cntrl Id
MSB

A
ck

00h

Dword1
LSB

A
ck

00h

Dword1

A
ck

00h

Dword1

A
ck

00h

Dword2
MSB

A
ck

00h

Dword2

A
ck

00h

Dword1
MSB

A
ck

00h

Dword2
LSB

A
ck

00h

Dword2

A
ck

45h

Length

A
ck

00h

Dword3
LSB

A
ck

00h

Dword3

A
ck

00h

Dword3

A
ck

00h

Dword3
MSB

A
ck

00h

Dword4
LSB

A
ck

00h

Dword4

A
ck

00h

Dword4

A
ck

00h

Dword5
MSB

A
ck

00h

Dword5

A
ck

00h

Dword4
MSB

A
ck

00h

Dword5
LSB

A
ck

00h

Dword5

A
ck

04h

Offset
LSB

A
ck

00h

Offset

A
ck

00h

Offset

A
ck

00h

Offset
MSB

A
ck

14h

Length
LSB

A
ck

00h

Length

A
ck

00h

Length

A
ck

00h

Dword8
MSB

A
ck

00h

Dword8

A
ck

00h

Length
MSB

A
ck

00h

Dword8
LSB

A
ck

00h

Dword8

A
ck

00h

Dword9
LSB

A
ck

00h

Dword9

A
ck

00h

Dword9

A
ck

00h

Dword9
MSB

A
ck

01h

Dword10
LSB

A
ck

00h

Dword10

A
ck

00h

Dword10

A
ck

00h

Dword11
MSB

A
ck

00h

Dword11

A
ck

00h

Dword10
MSB

A
ck

00h

Dword11
LSB

A
ck

00h

Dword11

A
ck

00h

Dword12
LSB

A
ck

00h

Dword12

A
ck

00h

Dword12

A
ck

00h

Dword12
MSB

A
ck

00h

Dword13
LSB

A
ck

00h

Dword13

A
ck

00h

Dword13

A
ck

00h

Dword14
MSB

A
ck

00h

Dword14

A
ck

00h

Dword13
MSB

A
ck

00h

Dword14
LSB

A
ck

00h

Dword14

A
ck

St
ar

t

3Ah

SSD
Addr

0

A
ck

0Fh

Protocol=
MCTP

A
ck

4Ah

CRC32C
LSB

A
ck

C3h

CRC32C

A
ck

2Ch

CRC32C

A
ck

FAh

CRC32C
MSB

A
ck

0Dh

Length

A
ck

EFh

PEC

A
ck

St
o

p

21h

BMC
Addr

1

A
ck

01h

MCTP
Version

A
ck

00h

SSD
EID

A
ck

00h

BMC
EID

A
ck

5Bh

flags,seq,
own, tag

A
ck

00h

Dword15
LSB

A
ck

00h

Dword15

A
ck

00h

Dword15

A
ck

00h

Dword15
MSB

A
ck

21h

BMC
Addr

1

A
ck

01h

MCTP
Version

A
ck

00h

SSD
EID

A
ck

00h

BMC
EID

A
ck

8Bh

flags,seq,
own, tag

A
ck

84h

Type =
NVMe-MI

A
ck

10h

NVMe
Admin

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

B2h

PEC

A
ck

St
o

p

Example 2: This example shows an NVMe Storage Device’s Response Message to the Identify Command
from Example 1. This message is small enough to fit in a single packet so both MCTP SOM and EOM flags
are set. The NVM Express specification defines the format (Dwords 0, 1, and 3) of the Identify Controller
Data Structure bytes that are returned.

Note that the SMBus/I2C addresses and MCTP Endpoint IDs in the Response Message are swapped from
their order in the Request Message. Also note that the incrementing MCTP packet sequence number for
the Management Endpoint is independent from the Management Controller’s MCTP packet sequence
number.

NVM ExpressTM Management Interface Revision 1.1b

152

St
ar

t

20h

BMC
Addr

0
A

ck

0Fh

Protocol=
MCTP

A
ck

3Bh

SSD
Addr

1

A
ck

00h

Dword0
LSB

A
ck

00h

Dword0

A
ck

00h

Dword0

A
ck

00h

Dword0
MSB

A
ck

00h

Dword1
LSB

A
ck

00h

Dword1

A
ck

00h

Dword1

A
ck

00h

Dword3
MSB

A
ck

00h

Dword3

A
ck

00h

Dword1
MSB

A
ck

00h

Dword3
LSB

A
ck

00h

Dword3

A
ck

31h

Length

A
ck

41h

Response
Data ‘A’

A
ck

5Ah

Response
Data ‘Z’

A
ck

31h

Response
Data ‘1’

A
ck

32h

Response
Data ‘2’

A
ck

33h

Response
Data ‘3’

A
ck

34h

Response
Data ‘4’

A
ck

35h

Response
Data ‘5’

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

36h

Response
Data ‘6’

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

20h

Response
Data ‘ ‘

A
ck

7Bh

CRC32C
MSB

A
ck

C4h

CRC32C

A
ck

20h

Response
Data ‘ ‘

A
ck

7Ah

CRC32C
LSB

A
ck

1Fh

CRC32C

A
ck

48h

PEC

A
ck

St
o

p

00h

Status=
Success

A
ck

00h

Rsvd
A

ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

01h

MCTP
Version

A
ck

00h

BMC
EID

A
ck

00h

SSD
EID

A
ck

C3h

flags, seq
own, tag

A
ck

84h

Type=
NVMe-MI

A
ck

90h

NVMe
Admin

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

Example 3: In this example, a Management Controller issues an NVM Subsystem Health Status Poll
command and clears the Composite Controller Status. Note that the MCTP packet sequence number is
incremented from the last packet the Management Controller sent in Example 1. The NVMe-MI Message
Type value of 08h with Opcode 01h makes this an NVM Subsystem Health Status Poll command. Bit 31 of
Dword1 set to ‘1’ clears the Composite Controller Status after preparing the response. Only the first non
SR-OV PCI function with any of the trigger able changes is requested.

St
ar

t

3Ah

SSD
Addr

0

A
ck

0Fh

Protocol=
MCTP

A
ck

01h

Opcode=
SubSys

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

00h

Dword0
LSB

A
ck

00h

Dword0

A
ck

00h

Dword0

A
ck

80h

Dword1
MSB

A
ck

00h

Dword1

A
ck

00h

Dword0
MSB

A
ck

00h

Dword1
LSB

A
ck

00h

Dword1

A
ck

19h

Length

A
ck

AAh

CRC32C
LSB

A
ck

EFh

CRC32C

A
ck

81h

CRC32C

A
ck

B4h

CRC32C
MSB

A
ck

48h

PEC

A
ck

St
op

A
ck

00h

SSD
EID

A
ck

00h

BMC
EID

A
ck

EBh

flags, seq
own, tag

A
ck

84h

Type =
NVMe-MI

A
ck

08h

Cmd =
NVMe-MI

A
ck

00h

Rsvd

A
ck

21h

BMC
Addr

1

A
ck

00h

Rsvd

A
ck

01h

MCTP
Version

Example 4: This example shows an NVMe Storage Device’s response to the NVM Subsystem Health
Status Poll command from Example 3. Note that the MCTP packet sequence number is incremented from
the last packet the NVMe Storage Device sent in Example 2. Controller ID 0 had a reportable trigger due
to its composite temperature change.

St
ar

t

20h

BMC
Addr

0

A
ck

0Fh

Protocol=
MCTP

A
ck

01h

MCTP
Version

A
ck

00h

BMC
EID

A
ck

00h

SSD
EID

A
ck

D3h

flags, seq
own, tag

A
ck

84h

Type=
NVMe-MI

A
ck

88h

Cmd=
NVMe-MI

A
ck

00h

Rsvd

A
ck

3Bh

SSD
Addr

1

A
ck

00h

Status=
Success

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

38h

Subsystem
Status

A
ck

FFh

SMART
Warnings

A
ck

1Eh

Composite
Temp.

A
ck

00h

Rsvd
A

ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

05h

Percent
Life Used

A
ck

01h

Ctlr Stat
LSB

A
ck

00h

Ctlr Stat
MSB

A
ck

19h

Length

A
ck

57h

CRC32C
MSB

A
ck

3Bh

CRC32C

A
ck

C8h

CRC32C
LSB

A
ck

3Bh

CRC32C

A
ck

DAh

PEC

A
ck

St
o

p

Example 5: This example shows a Management Controller issuing a Replay Control Primitive. The
Management Controller may choose to replay an entire Response Message if, for example, the Message
Integrity Check failed on the initial Response Message. Or the Management Controller may choose to
replay a partial message starting at a specified MCTP Transmission Unit Size boundary if, for example, the
SMBus PEC failed on an individual packet. The Control Primitive Tag is arbitrarily set to 45h and
remembered by the Management Controller to match response packets to the correct Control Primitives.
The MCTP Tag is also modified for this example to show the effect on the replayed packet.

NVM ExpressTM Management Interface Revision 1.1b

153

St
a

rt

3Ah

SSD
Addr

0

A
ck

0Fh

Protocol=
MCTP

A
ck

04h

Opcode=
Replay

A
ck

45h

Tag

A
ck

00h

CPSP
Packet#

A
ck

00h

CPSP
Rsvd

A
ck

11h

Length

A
ck

CDh

CRC32C
LSB

A
ck

21h

CRC32C

A
ck

ECh

CRC32C

A
ck

1Eh

CRC32C
MSB

A
ck

C1h

PEC

A
ck

St
o

p

21h

BMC
Addr

1

A
ck

01h

MCTP
Version

A
ck

00h

SSD
EID

A
ck

00h

BMC
EID

A
ck

FCh

flags, seq
own, tag

A
ck

84h

Type =
NVMe-MI

A
ck

00h

Cmd =
Primitive

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

Example 6: This example shows an NVMe Storage Device sending an acknowledgement Response
Message to the Replay Control Primitive and then sending a second Response Message that replays the
previous Response Message from specified offset of zero. Note that the previous command is not reissued
because that could return different data after having the Composite Controller Status cleared.

St
ar

t

20h

BMC
Addr

0

A
ck

0Fh

Protocol=
MCTP

A
ck

3Bh

SSD
Addr

1
A

ck

00h

Status=
Success

A
ck

45h

Tag

A
ck

01h

CPSR
Response

A
ck

00h

CPSR
Rsvd

A
ck

11h

Length

A
ck

83h

CRC32C
MSB

A
ck

02h

CRC32C

A
ck

BDh

CRC32C
LSB

A
ck

86h

CRC32C

A
ck

94h

PEC

A
ck

St
o

p

01h

MCTP
Version

A
ck

00h

BMC
EID

A
ck

00h

SSD
EID

A
ck

E4h

flags, seq
own, tag

A
ck

84h

Type=
NVMe-MI

A
ck

80h

Cmd=
Primitive

A
ck

00h

Rsvd

A
ck

00h

Rsvd

A
ck

	Table of Contents
	1 Introduction
	1.1 Overview
	1.2 Scope
	1.2.1 Outside of Scope

	1.3 Theory of Operation
	1.3.1 Out-of-Band Theory of Operation
	1.3.1.1 Management Component Transport Protocol
	1.3.1.2 FRU Information Device
	1.3.2 In-Band Theory of Operation

	1.4 NVM Subsystem Architectural Model
	1.5 NVMe Storage Device Architectural Model
	1.6 NVMe Enclosure Architectural Model
	1.7 Conventions
	1.8 Definitions
	1.8.1 Carrier
	1.8.2 Command Message
	1.8.3 Command Slot
	1.8.4 Control Primitive
	1.8.5 NVMe Controller (Controller)
	1.8.6 NVMe Controller Management Interface (Controller Management Interface)
	1.8.7 Enclosure Management
	1.8.8 Enclosure Services Process
	1.8.9 Expansion Connector
	1.8.10 Field-Replaceable Unit (FRU)
	1.8.11 FRU Information Device
	1.8.12 In-Band
	1.8.13 Management Controller
	1.8.14 Management Endpoint or NVMe Management Endpoint
	1.8.15 Management Endpoint Buffer
	1.8.16 NVMe Enclosure
	1.8.17 NVMe Processing
	1.8.18 NVMe Storage Device
	1.8.19 NVMe Storage Device FRU
	1.8.20 NVMe Subenclosure (Subenclosure)
	1.8.21 NVMe-MI Message
	1.8.22 NVM Subsystem
	1.8.23 Out-of-Band
	1.8.24 Process
	1.8.25 Request Message
	1.8.26 Requester
	1.8.27 Responder
	1.8.28 Response Message
	1.8.29 SMBus/I2C Mux
	1.8.30 Upstream Connector
	1.8.31 VPD or Vital Product Data

	1.9 Keywords
	1.9.1 mandatory
	1.9.2 may
	1.9.3 optional
	1.9.4 R
	1.9.5 reserved
	1.9.6 shall
	1.9.7 should

	1.10 Byte, Word, and Dword Relationships
	1.11 References

	2 Physical Layer
	2.1 PCI Express
	2.2 SMBus/I2C
	2.3 Error Handling

	3 Message Transport
	3.1 NVMe-MI Messages
	3.1.1 Message Fields
	3.1.1.1 Message Integrity Check

	3.2 Out-of-Band Message Transport
	3.2.1 MCTP Packet
	3.2.1.1 Packet Assembly into Messages
	3.2.2 Out-of-Band Error Handling

	3.3 In-Band Tunneling Message Transport

	4 Message Servicing Model
	4.1 NVMe-MI Messages
	4.1.1 Request Messages
	4.1.2 Response Messages
	4.1.2.1 Generic Error Response
	4.1.2.2 Invalid Parameter Error Response

	4.2 Out-of-Band Message Servicing Model
	4.2.1 Control Primitives
	4.2.1.1 Pause
	4.2.1.2 Resume
	4.2.1.3 Abort
	4.2.1.4 Get State
	4.2.1.5 Replay
	4.2.2 Out-of-Band Error Handling
	4.2.2.1 Command Timeouts
	4.2.2.2 Control Primitive Timeouts
	4.2.3 Management Endpoint Buffer

	4.3 In-Band Tunneling Message Servicing Model
	4.3.1 NVMe-MI Send Command
	4.3.1.1 NVMe-MI Send Command Request Message to NVMe Admin Command SQE Mapping
	4.3.1.2 NVMe-MI Send Command Servicing Model
	4.3.2 NVMe-MI Receive Command
	4.3.2.1 NVMe-MI Receive Command Request Message to NVMe Admin Command SQE Mapping
	4.3.2.2 NVMe-MI Receive Command Servicing Model

	5 Management Interface Command Set
	5.1 Configuration Get
	5.1.1 SMBus/I2C Frequency (Configuration Identifier 01h)
	5.1.2 Health Status Change (Configuration Identifier 02h)
	5.1.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

	5.2 Configuration Set
	5.2.1 SMBus/I2C Frequency (Configuration Identifier 01h)
	5.2.2 Health Status Change (Configuration Identifier 02h)
	5.2.3 MCTP Transmission Unit Size (Configuration Identifier 03h)

	5.3 Controller Health Status Poll
	5.3.1 Filtering by Controller Type
	5.3.2 Filtering by Controller Health Status Changed Flags

	5.4 Management Endpoint Buffer Read
	5.5 Management Endpoint Buffer Write
	5.6 NVM Subsystem Health Status Poll
	5.7 Read NVMe-MI Data Structure
	5.8 Reset
	5.9 SES Receive
	5.10 SES Send
	5.11 VPD Read
	5.12 VPD Write

	6 NVM Express Admin Command Set
	6.1 Request and Response Data
	6.2 Status
	6.3 Sanitize Operation

	7 PCIe Command Set (Optional)
	7.1 PCIe Configuration Read
	7.2 PCIe Configuration Write
	7.3 PCIe I/O Read
	7.4 PCIe I/O Write
	7.5 PCIe Memory Read
	7.6 PCIe Memory Write

	8 NVM Express Management Enhancements
	8.1 Identify Controller
	8.2 Management Interface Specific Features
	8.2.1 Controller Metadata
	8.2.2 Namespace Metadata

	9 Management Architecture
	9.1 Out-of-Band Operational Times
	9.2 Vital Product Data
	9.2.1 Common Header
	9.2.2 Product Info Area (offset 8 bytes)
	9.2.3 NVMe MultiRecord Area
	9.2.4 NVMe PCIe Port MultiRecord Area
	9.2.5 Topology MultiRecord Area
	9.2.5.1 Extended Element Descriptor
	9.2.5.2 Upstream Connector Element Descriptor
	9.2.5.3 Expansion Connector Element Descriptor
	9.2.5.4 Label Element Descriptor
	9.2.5.5 SMBus/I2C Mux Element Descriptor
	9.2.5.6 PCIe Switch Element Descriptor
	9.2.5.7 NVM Subsystem Element Descriptor
	9.2.5.8 Vendor-Specific Element Descriptors

	9.3 Reset
	9.3.1 NVM Subsystem Reset
	9.3.2 Controller Level Reset
	9.3.3 Management Endpoint Reset
	9.3.4 SMBus Reset

	9.4 Security

	Appendix A – Technical Note: NVM Express Basic Management Command
	Appendix B – Example MCTP Messages & Message Integrity Check
	Appendix C – Example NVMe-MI Messages over SMBus/I2C

