

LEGAL NOTICE:

© Copyright 2007 – 2021 NVM Express, Inc. ALL RIGHTS RESERVED.
This NVM Express Management Interface revision 1.1 technical proposal is proprietary to the NVM
Express, Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express Management Interface revision 1.1 technical proposal
subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy
and Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2021 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such
citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the
property of their respective owners.

NVM Express Management Interface Workgroup
c/o VTM, Inc.
3855 SW 153rd Drive
Beaverton, OR 97003 USA
info@nvmexpress.org

2

NVM Express Technical Proposal for New Feature

Technical Proposal ID 6031 – Progress Detect During Paused Process State

Change Date 2021.03.16

Builds on Specification NVM Express Management Interface 1.1b

References TP 6030 More Processing Required Time Reporting

Technical Proposal Author(s)

Name Company

Myron Loewen Intel

Austin Bolen Dell

This Technical Proposal enables Management Controllers to determine if a paused command in process
state has made sufficient progress to transmit a response. No new mechanisms are required, the existing
Get State primitive will just report Transmit State instead of Process State when the processing
completes.

The prior constraint of staying in Process State after completing processing if paused is modified to move
a command into Transmit State, just as if not paused. Preventing the transition during pause was an
arbitrary decision in prior versions of the specification that did not add value. This new behavior is
consistent with the behavior when not paused to simplify the specification and eliminate some corner
cases.

A paused command slot is still paused even after transitioning to the transmit state. No traffic is
initiated by the command slot until an implicit or explicit resume occurs.

This TP is not backwards compatible for a Management Controller reading Get State with Command
Initiated Auto Pause. Now these will enter transmit state instead of sticking in process state until
resumed. It may also have been possible to trap a command in process state before, but there were race
conditions that would have already required the Management Controller to handle an escape to transmit
state.

3

Revision History

Revision Date Change Description

2020.11.25 Initial Draft

2021.01.28
Incorporated all feedback: clarification that pausing MPR does not block processing,
combining with TP 6030 text, and some text clean up

2021.02.08
New text for “Description for NVMe-MI Changes Document”. Feedback integrated
for corner cases around pause/resume involving MPR.

2021.03.09 Integrated into the NVMe Management Interface Specification, Revision 1.1.

2021.03.16
Accepted all changes, removed all comments, and converted references/cross-
references to text.

4

Description for NVMe-MI Changes Document

Feature Enhancement:

 Allow a Management Controller to be able to easily detect when processing of Command
Messages that were paused in the Process state have completed. (mandatory)

 Clarify pause/resume primitives impact on More Processing Required responses in 4.1.2

 New requirement / incompatible change in section 4.2, 4.2.1.1, 4.2.1.2, 4.2.1.3, 4.2.1.5.
o Allow a Command Slot that is paused in the Process state to transition to the Transmit

state once command processing is complete.

 New requirement / incompatible change in section 4.2.1.2.
o “If the Command Slot was paused and a More Processing Required Response has not

yet been transmitted for the Command Message being processed, then the request-to-
response timer shall be reset and restarted (refer to section 4.2.2.1 for details on the
request-to-response time).”

 References:
o NVMe-MI revision 1.1b sections 4.1.2, 4.2.1.1, 4.2.1.2, 4.2.1.3, 4.2.1.5.
o Technical Proposal 6030.

Description of Specification Changes

Markup Conventions:

Black: Unchanged (however, hot links are removed)
Red Strikethrough: Deleted
Blue: New
Blue Highlighted: TBD values, anchors, and links to be inserted in new text.
<Green Bracketed>: Notes to editor

Description of Specification Changes

<Note to editor:

1. Globally replace “Pause primitive” with “Pause Control Primitive”.
2. Globally replace “Resume primitive” with “Resume Control Primitive”.
3. Globally replace “Abort primitive” with “Abort Control Primitive”.
4. Globally replace “Get State primitive” with “Get State Control Primitive”.
5. Globally replace “Replay primitive” with “Replay Control Primitive”.>

5

Modify section 3.1.1.1 as follows:

…

Refer to Appendix B for artificial messages and their corresponding Message Integrity Check values.
See Section 4.2.1.5 for special requirements on how to construct the Response Message when the
Management Controller issues a Replay Control Primitiveof a Response Message with a non-zero
Response Replay Offset.
…

Modify Figure 26 (Response Message Status Values) as follows:

Figure 26: Response Message Status Values

Value Description

Error
Response

Format
Section

00h Success: The command completed successfully. 4.1.2.1

01h

More Processing Required: The Command Message is in progress and requires
more time to complete processing. When this Response Message Status is used
in a Response Message, a subsequent Response Message contains the result of
the Command Message. This Response Message Status shall not be sent more
than once per Request Command Message, except for retransmission due to a
Replay Control Primitive as described in section 4.2.1.5.

4.1.2.1

Modify one sentence in Section 4.2 Out-of-Band Message Servicing Model as shown below:

Figure 30: Command Servicing State Diagram

Idle

ReceiveTransmit

Process

Start of
Command Message

Complete
Command Message

Received

Abort or
Error

Response
Required

or
Resume

Response Message
Transmitted

or
Abort

Abort

More
Processing
Required

Sent

1. Idle: This is the default state of the command servicing state machine (e.g., following a reset).
Command servicing transitions from Idle to the Receive state when the first MCTP packet of a
Command Message is received (i.e., an MCTP packet with the SOM bit in the MCTP packet header
set to ‘1’ and the Message Type set to 4h).

6

2. Receive: The state when the first packet of a Command Message has been received and the
message is being assembled and/or validated. Command servicing transitions from Receive to the
Idle state when an Abort Control Primitive is received, an error is detected in message assembly
(refer to section 3.2.1.1), or the Message Integrity Check fails (refer to section 3.1.1.1).
Command servicing transitions from Receive state to the Process state when a Command
Message is assembled and the message integrity check is successful.

3. Process: The state when a Command Message is processed. Processing of a Command Message
consists of checking for errors with the Command Message and performing the actions specified
by the Command Message or aborting the Command Message. Command servicing transitions
from Process to the Transmit state when a Response Message is required to be sent (i.e., the
Pause Flag is cleared to ‘0’ and either of the following are true: all processing of the Command
Message has completed or command processing is expected to exceed the corresponding
transport binding specification response timeout). Command servicing transitions from the Process
state to the Idle state due to an Abort Control Primitive (refer to section 4.2.1.3).

4. Transmit: The state in which a Response Message for the Command Message is transmitted to
the Management Controller. Command servicing transitions from the Transmit to the Idle state once
the entire NVMe-MI Message associated with the response to the Command Message has been
transmitted on the physical medium or due to an Abort Control Primitive (refer to section 4.2.1.3).

If, and only if, both the command servicing did not complete in the Process state and the Command
Slot is not paused, then the Management Endpoint transmits a Response Message with status
More Processing Required and the command servicing transitions back to the Process state. If the
Command Message requires more processing, then the Command Slot shall transition back to the
Process state.

Modify Process paragraph in Section 4.2.1.1 Pause as shown below:

Process: The Pause Control pPrimitive sets the Pause Flag to ‘1’ (refer to section 4.2.1.4) causing the
Command Slot to remain in the Process state until a Resume Control Primitive is received. The Pause
Flag has no effect on the command processing in the Command Slot. Upon completion of command
processing Though command processing may complete, the Command Slot shall not transition to the
Transmit state.

Modify Process paragraph in Section 4.2.1.2 Resume as shown below:

Process: The Resume primitive allows a previously paused Command Slot to transition to the Transmit
state once processing is complete and starts transmitting a response after responding to the Resume
primitive. If the Command Slot is paused and a More Processing Required Response has not yet been
transmitted for the Command Message being processed, then the request-to-response timer shall be
reset and restarted (refer to section 4.2.2.1 for details on the request-to-response time). The Pause Flag
is cleared to ‘0’ (refer to section 4.2.1.4).

Transmit: The Management Endpoint resumes transmission of the rResponse Message corresponding
to the cCommand Message associated with theat Command sSlot after responding to the Resume
Control pPrimitive. The Pause Flag is cleared to ‘0’ (refer to section 4.2.1.4).

The Management Endpoint shall transmit a Control Primitive Response Message with success status
after receiving the Resume Control pPrimitive.

Modify Process paragraph in Section 4.2.1.3 Abort as shown below:
…

7

Aborting a Command Message shall have no effect on the other Command Slot of the Management
Endpoint, other Management Endpoints, or NVMe Controllers in the NVM Subsystem. Subsequent
command servicing in the Command Slot is not affected by the Abort Control Primitive.
…
Process: The Abort primitive causes processing of the command in the Command Slot to be aborted:

a) If the Abort primitive was received before command processing started, the Management Endpoint

discards the contents of the Command Slot and transitions to the Idle state. The Management

Endpoint shall transmit a Success Response and the CPAS field set to 1h; or

b) If the Abort primitive was received while the command is being processed, the Management

Endpoint discards the contents of the Command Slot and transitions to the Idle state. The

Management Endpoint attempts to abort the command:

 If the command is aborted and had no effect on the NVM Subsystem, then the Management

Endpoint shall transmit a Success Response and the CPAS field set to 1h; or

 If the Management Endpoint is not able to abort the command, then the Management Endpoint

shall transmit a Success Response and set the CPAS field to 2h.; or

 If the command has completed processing (e.g., the Management Endpoint is paused), then

the Management Endpoint shall transmit a Success Response and the CPAS field is cleared

to 0h.

Description of Specification Changes to TP 6030

Modify Process paragraph in Section 4.2.1.5 Replay as shown below:
…
Note that the Management Controller will need extensions to the MCTP Base Specification in its MCTP
layer in order to Rreplay a Response Message using a non-zero Response Replay Offset. No extensions
to the MCTP Base Specification are needed to Rreplay with Response Replay Offset equal to zero. For
the case where a Management Controller chooses to use a non-zero Response Replay Offset, the MCTP
Base Specification requires terminating message assembly for certain errors (i.e., receiving a packet with
bad packet data integrity).
…
Process: If a More Processing Required Response has not been transmitted for the Command Message
being processed, then a Success Response shall be transmitted with the RR bit cleared to ‘0’.

If a More Processing Required Response has been transmitted, then a Success Response shall be
transmitted with the RR bit set to ‘1’ and then the More Processing Required Response shall be
retransmitted. The Management Endpoint shall update the More Processing Required Time field in the
Response Message with the current worst-case amount of additional time that the Management
Controller should wait for the Management Endpoint to complete processing of the Command Message.
The Replay primitive requests retransmission of the last response transmitted for the command in this
Command Slot:

a) If a Response Message has not been transmitted for the Command Message (i.e., the slot never

entered the Transmit state for the Command Message), then the Management Endpoint transmits

a Response Message with success status and the RR bit cleared to ‘0’; or

b) If a Response Message has been transmitted for the Command Message (i.e., a Response

Message was transmitted indicating that more processing was required), then the Management

Endpoint transmits a Response Message with success status with the RR bit set to ‘1’. The

Management Endpoint shall retransmit the response indicating that more processing is required.

The Management Endpoint shall update the More Processing Required Time field in the Response

Message with the current worst-case amount of additional time in 100 ms units that the

8

Management Controller should wait for the Management Endpoint to complete processing of the

Command Message.

Transmit: The Management Endpoint stops transmitting response packets for the Command Slot and then

transmits a Response Message with success status with the RR bit set to ‘1’. The Management Endpoint

transmits a Response Message containing the packets starting at the packet offset specified in the

Response Replay Offset field of the Replay Control Primitive after the Control Primitive Success Response.

The Command Slot remains in the Transmit state until retransmission is complete.

