
Architected for Performance

Bringing NVMe®/TCP Up to Speed
Sponsored by NVM Express organization, the owner of NVMe®, NVMe-oF™ and NVMe-MI™ standards

Sagi Grimberg, CTO, Lightbits



2

Speakers 

Sagi Grimberg



3

NVMe®/TCP Technology (Short) Intro
▪ NVMe/TCP technology is the standard transport binding to run NVMe architecture on 

top of standard TCP/IP networks

▪ Standard NVMe specification multi-queue interface runs on top of TCP sockets

▪ Same NVMe command set, encapsulated over NVMe/TCP PDUs



4

NVMe®/TCP Technology (Short) Intro

▪ Each NVMe queue-pair is mapped to a bidirectional TCP connection

▪ Commands and data-transfer are processed by a dedicated context



5

NVMe®/TCP Architecture Queue Mapping

▪ Each NVMe queue normally mapped to a dedicated CPU core

▪ But not necessarily

▪ No controller-wide serialization



6

Latency Contributors

▪ Serialization - Lightweight, only on a per-queue basis (and hctx, sockets etc) - scales 
pretty well

▪ Context Switching - 2 at a minimum contributed by the driver

▪ Memory copy - Only on RX, not a huge contributor (sometimes is on high load)

▪ Interrupts - Definitely impactful, LRO/GRO/Adaptive-moderation can mitigate a bit, but 
latency is less consistent

▪ socket overhead - Exists, but not huge, mostly around small size RX/TX

▪ Affinitization - Definitely a contributor if not affinitized correctly

▪ Cache pollution - Has some, not excessive

▪ Head-of-Line blocking - Can be apparent in mixed workloads



7

Host Direct-IO Flow

▪ User issues issues direct file/block I/O (ignoring the rest of the stack)

▪ nvme_tcp_queue_rq prepares NVMe®/TCP PDU and place it in a queue
▪ nvme_tcp_io_work context picks up I/O and process it
▪ I/O completes, controller sends back data/completion to the host
▪ NIC generates interrupt
▪ NAPI is triggered
▪ nvme_tcp_data_ready is triggered
▪ nvme_tcp_io_work context is triggered, processing and completing the I/O
▪ user context completes I/O



8

Host Direct-IO Flow

▪ User issues issues direct file/block I/O (ignoring the rest of the stack)

▪ nvme_tcp_queue_rq prepares NVMe/TCP PDU and place it in a queue
▪ nvme_tcp_io_work context picks up I/O and process it
▪ I/O completes, controller sends back data/completion to the host
▪ NIC generates interrupt
▪ NAPI is triggered
▪ nvme_tcp_data_ready is triggered
▪ nvme_tcp_io_work context is triggered, processing and completing the I/O
▪ user context completes I/O

Context-Switch

Context -Switch

Soft -IRQ



9

Mixed Workload Optimization
▪ Linux block layer allows for multiple queue maps

▪ Default: normal set of HW queues
▪ Read: Dedicated queues for Reads
▪ Poll: Dedicated queues for polling application and RWF_HIPRI I/O

▪ Eliminate Head-of-Line blocking of small reads vs. large writes
▪ Send Reads on dedicated read queues, and writes on default queues

▪ Added support for multiple queue maps and plugging into the block layer

READ IOPs [k] READ Ave Latency [us] READ 99.99% latency [us]

Baseline 80.4 396 14222

Patched 171 181.5 1811

Test : 16 readers issuing synchronous 4K reads, 1 unbound writer issuing 1M writes @QD=32



10

Affinity Optimizations

▪ Linux grew capability to split different I/O types to different queue maps
▪ optimize queue io_cpu assignment for multiple queue maps

▪ Use separated alignment for different queue maps (read/default/polling) 
▪ Calculate each queue map alignment individually
▪ Especially important for Read and Poll queue maps



11

Low QD Latency Optimizations - TX Path

▪ Eliminate NVMe®/TCP context switch when queuing a request
▪ Prepare NVMe/TCP technology and process directly from 

nvme_tcp_queue_rq
▪ Network send might_sleep, so need to convert hctx locking to srcu
▪ Serialize of two contexts of the same queue is required

▪ Introduce a mutex
▪ Only if the queue is empty
▪ Only if the queue mapped CPU matches the running cpu

▪ Socket priority
▪ Steers egress traffic to the preferred NIC queue set



12

Low QD Latency Optimizations - RX Path

▪ Linux grew a polling interface for latency sensitive I/O
▪ Submit with RWF_HIPRI
▪ Poll for completion (also via io_uring IORING_SETUP_IOPOLL)

▪ We add nvme_tcp_poll and plug it into blk_poll interface
▪ Add dedicated queues for polling (connect options)
▪ nvme_tcp_poll calls sk_busy_loop

▪ Skip RX data_ready context switch if application is polling at the same time
▪ Mostly true if NIC moderation is working well
▪ If device can hold off interrupts more aggressively it works very well



13

Low QD Latency Optimizations - Results



14

ADQ improvements
Traffic Isolation - Direct NVMe® technology traffic to its dedicated queue set
▪ Inbound:

▪ Dedicated queue-set configuration (tc-mqprio)
▪ Traffic Filtering (tc-flower)
▪ Queue selection (RSS/Flow Director)

▪ Outbound:
▪ Set Socket priority
▪ Extensions to Transmit Packet Steering (XPS)

Value
- No noisy traffic from neighbor workloads
- Opportunity to customize network parameters for a specific workload



15

ADQ Improvements
Minimizing Context switching and Interrupts overhead 
▪ Busy polling on dedicated queue set

▪ Drain network completions in application context
▪ Process NVMe® technology completions directly in application context

▪ Handle Request/Response in application context
▪ Keeps the application thread active - no redundant context switch

▪ Grouping multiple NVMe®/TCP queues to a single NIC HW queue
▪ Streamlines sharing of a NIC HW queue - no redundant context switch

Value
- Reducing CPU utilization
- Lowering Latency



16

ADQ Measurements
- Comparing NVMe/TCP with ADQ enabled vs. ADQ Disabled
- Platform is Cascade-Lake



17

High QD Latency Optimizations - Batching

● We want to leverage information about build up of a queue (opportunity to batch)
○ The block layer indicates the driver if request is the last one or more is coming (bd-

>last indicator)

● Modified the driver send queue from list (protected by a spinlock) to a lockless list
○ I/O thread pulls from list in batches, has a better view of what is coming
○ Schedule I/O thread only when the “last in batch” arrives…

● Optimized network MSG flags based on this information: MSG_MORE, 
MSG_SENDPAGE_NOTLAST (and MSG_OER if last in batch)

● Improve batching support in blk-mq in case of I/O schedulers [Ming Lei]

● Implemented an optimized batching scheduler for TCP stream based storage devices
○ i10 paper [Jaehyun Hwang, Qizhe Cai Ao Tang, Rachit Agarwal Cornell University]

http://www.cs.cornell.edu/%7Eragarwal/pubs/i10.pdf


18

High QD Latency Optimizations - Results



19

Questions?



Architected for Performance


	Bringing NVMe®/TCP Up to Speed
	Speakers 
	NVMe®/TCP Technology (Short) Intro
	NVMe®/TCP Technology (Short) Intro
	NVMe®/TCP Architecture Queue Mapping
	Latency Contributors
	Host Direct-IO Flow
	Host Direct-IO Flow
	Mixed Workload Optimization
	Affinity Optimizations
	Low QD Latency Optimizations - TX Path
	Low QD Latency Optimizations - RX Path
	Low QD Latency Optimizations - Results
	ADQ improvements
	ADQ Improvements
	ADQ Measurements
	High QD Latency Optimizations - Batching
	High QD Latency Optimizations - Results
	Slide Number 19
	Slide Number 20

