
NVM Express Technical Errata

Errata ID 027

Change Date 8/3/2012

Affected Spec Ver. NVM Express 1.0c

Corrected Spec Ver.

Submission info

Name Company Date

Judy Brock Samsung 4/26/2012

Ken Okin Virident 4/26/2012

Dave Landsman SanDisk 4/26/2012

Amber Huffman Intel 4/26/2012

Peter Onufryk IDT 4/26/2012

Don Walker Dell 4/26/2012

This erratum attempts to use the pending command and candidate command language. More
details to be added after feedback from the group.

Description of the specification technical flaw:

Modify the first two paragraphs of section 1.4 as shown below:

NVM Express is a scalable host controller interface designed to address the needs of Enterprise and Client
systems that utilize PCI Express based solid state drives. The interface provides an optimized command
issue submission and completion paths. It includes support for parallel operation by supporting up to 64K I/O
Queues with up to 64K commands per I/O Queue. Additionally, support has been added for many Enterprise
capabilities like end-to-end data protection (compatible with T10 DIF and SNIA DIX standards), enhanced
error reporting, and virtualization.

The interface has the following key attributes:

 Does not require uncacheable / MMIO register reads in the command issue submission or completion
path.

 A maximum of one MMIO register write is necessary in the command issue submission path.

 Support for up to 64K I/O queues, with each I/O queue supporting up to 64K commands.

 Priority associated with each I/O queue with well-defined arbitration mechanism.

 All information to complete a 4KB read request is included in the 64B command itself, ensuring
efficient small I/O operation.

 Efficient and streamlined command set.

 Support for MSI/MSI-X and interrupt aggregation.

 Support for multiple namespaces.

 Efficient support for I/O virtualization architectures like SR-IOV.

 Robust error reporting and management capabilities.

Modify the sixth paragraph of section 1.4 as shown below:

An Admin Submission and associated Completion Queue exist for the purpose of device management and
control (e.g., creation and deletion of I/O Submission and Completion Queues, aborting commands, etc.)
Only commands that are part of the Admin Command Set may be issued submitted to the Admin Submission
Queue.

Modify section 1.6.1 as shown below:

The Admin Queue is the Submission Queue and Completion Queue with identifier 0. The Admin Submission
Queue and corresponding Admin Completion Queue are used to issue submit administrative commands and
receive completions for those administrative commands, respectively.

The Admin Submission Queue is uniquely associated with the Admin Completion Queue.

Insert a new definition for command submission as section 1.6.4 as shown below:

1.6.4 candidate command

A candidate command is a submitted command the controller deems ready for processing.

Insert a new definition for command submission as section 1.6.6 as shown below:

1.6.6 command submission

A command is submitted when a Submission Queue Tail Doorbell write has completed that moves the
Submission Queue Tail Pointer value past the corresponding Submission Queue entry for the associated
command.

Modify bits 15:14 in the table in section 3.1.5 as shown below:

15:14 RW 0h

Shutdown Notification (SHN): This field is used to initiate shutdown

processing when a shutdown is occurring, (i.e., a power down condition is
expected.) For a normal shutdown notification, it is expected that the controller
is given time to process the shutdown notification. For an abrupt shutdown
notification, the host may not wait for shutdown processing to complete before
power is lost.

The shutdown notification values are defined as:

Value Definition

00b No notification; no effect

01b Normal shutdown notification

10b Abrupt shutdown notification

11b Reserved

This field Shutdown notification should be issued written by host software prior
to any power down condition and prior to any change of the PCI power
management state. It is recommended that this field shutdown notification also
be sent written prior to a warm reboot. To determine when shutdown
processing is complete, refer to CSTS.SHST. Refer to section 7.6.2 for
additional shutdown processing details.

Modify table in section 3.1.6 as shown below:

Bit Type Reset Description

31:04 RO 0 Reserved

03:02 RO 0

Shutdown Status (SHST): This field indicates the status of shutdown processing that

is initiated by the host setting the CC.SHN field.

The shutdown status values are defined as:

Value Definition

00b Normal operation (no shutdown has been requested)

01b Shutdown processing occurring

10b Shutdown processing complete

11b Reserved

To start executing commands on the controller after a shutdown operation
(CSTS.SHST set to 10b), a reset (CC.EN cleared to ‘0’) is required. If host software
issues submits commands to the controller without issuing a reset, the behavior is
undefined.

01 RO 0

Controller Fatal Status (CFS): This field is set to ’1’ when a fatal controller error

occurred that could not be communicated in the appropriate Completion Queue. This
field is cleared to ‘0’ when a fatal controller error has not occurred. Refer to section
Error! Reference source not found..

Bit Type Reset Description

00 RO 0

Ready (RDY): This field is set to ‘1’ when the controller is ready to process

commands after CC.EN is set to ‘1’. This field shall be cleared to ‘0’ when CC.EN is
cleared to ‘0’. Commands shall not be issued submitted to the controller until this field
is set to ‘1’ after the CC.EN bit is set to ‘1’. Failure to follow this requirement produces
undefined results. Host software shall wait a minimum of CAP.TO seconds for this
field to be set to ‘1’ after setting CC.EN to ‘1’ from a previous value of ‘0’.

Modify the first paragraph of section 3.1.10 as shown below:

This register defines the doorbell register that updates the Tail entry pointer for Submission Queue y. The
value of y is equivalent to the Queue Identifier. This indicates to the controller that new commands have been
submitted are ready for processing.

Modify the SQ Identifier field in Figure 13 as shown below:

Bit Description

31:16

SQ Identifier (SQID): Indicates the Submission Queue that to which the associated command

was submitted issued to. This field is used by host software when more than one Submission
Queue shares a single Completion Queue to uniquely determine the command completed in
combination with the Command Identifier (CID).

Modify the Do Not Retry field in Figure 15 as shown below:

Bit Description

31

Do Not Retry (DNR): If set to ‘1’, indicates that if the same command is re-issued re-submitted

it is expected to fail. If cleared to ‘0’, indicates that the same command may succeed if retried. If
a command is aborted due to time limited error recovery (refer to section 5.12.1.5), this field
should be cleared to ‘0’.

Modify the Command Aborted due to SQ Deletion field in Figure 17 as shown below:

08h Command Aborted due to SQ Deletion: The command was aborted due to a Delete I/O

Submission Queue request received for the Submission Queue that to which the command was

submitted issued to.

Modify the fifth bullet of section 4.6 as shown below:

 If the host desires to abort the fused operation, the host shall submit issue an Abort command
separately for each of the commands.

Modify section 4.7 as shown below:

4.7 Command Arbitration

A command is fetched when it is retrieved from host memory and stored internally to the controller. A
command is launched when the controller begins executing that command.

Arbitration refers to the order in which commands submitted for execution by host software are launched for
execution by the controller. The controller may access Submission Queues in any order. The controller
fetches commands from memory for future execution in order from each individual Submission Queue it

accesses. The controller may store commands internally for future execution. Arbitration does not imply
command completion order, rather arbitration determines the order in which commands that are launched for
execution by the controller. Since commands are of different types, of different sizes, and to different LBA
ranges on the controller, the order of completion is likely to be different than the order of command launch.

A command is submitted when a Submission Queue Tail Doorbell write moves the Submission Queue Tail
Pointer past the corresponding Submission Queue entry. The controller transfers submitted commands to the
controller’s local memory for subsequent processing using a vendor specific algorithm.

A command is being processed when the controller and/or namespace state is being accessed or modified by
the command (e.g., a Feature setting is being accessed or modified or a logical block is being accessed or
modified).

A command is complete when a Completion Queue entry for the command has been posted to the
corresponding Completion Queue. Upon completion, all controller state and/or namespace state
modifications made by that command are globally visible to all subsequently submitted commands.

A candidate command is a submitted command the controller deems ready for processing. The controller
selects command(s) for processing from the pool of submitted commands for each Submission Queue. The
commands that comprise a fused operation shall be processed together and in order by the controller. The
controller may select candidate commands for processing in any order. The order in which commands are
selected for processing does not imply the order in which commands are completed.

Arbitration is the method used to determine the Submission Queue from which the controller will start
processing the next candidate command(s). Once a Submission Queue is selected using arbitration, the
Arbitration Burst setting determines the maximum number of commands that the controller may start
processing from that Submission Queue before arbitration shall again take place. A fused operation may be
considered as one or two commands by the controller.

All controllers shall support the round robin command arbitration mechanism. A controller may optionally
implement weighted round robin with urgent priority class and/or a vendor specific arbitration mechanism.
The Arbitration Mechanism Supported field in the Controller Capabilities register (CC.AMS) indicates optional
arbitration mechanisms supported by the controller.

A command is ready for execution when a Submission Queue Tail Doorbell write has completed that moves
the Submission Queue Tail Pointer value past the corresponding Submission Queue entry for the associated
command. Within the same Submission Queue, ready commands may be launched in any order.

In order to make efficient use of the non-volatile memory, it is often advantageous to execute multiple
commands from a Submission Queue in parallel. For Submission Queues that are using weighted round
robin with urgent priority class or round robin arbitration, host software may configure an Arbitration Burst
setting. The Arbitration Burst setting indicates the maximum number of commands that the controller may
launch at one time from a particular Submission Queue. It is recommended that host software configure the
Arbitration Burst setting as close to the recommended value by the controller as possible (specified in the
Recommended Arbitration Burst field of the Identify Controller data structure in Figure 66), taking into
consideration any latency requirements. Refer to section 5.12.1.1.

If required resources (e.g. logical block locations) are not available that command(s) require, then those
command(s) may be deferred for launch to the next arbitration round. In some cases, this may result in fewer
commands being launched from a particular Submission Queue in an arbitration round.

4.7.1 Round Robin Arbitration

If the round robin arbitration mechanism is selected, the controller shall implement round robin command
arbitration amongst all Submission Queues, including the Admin Submission Queue. In this case, all
Submission Queues are treated with equal priority. The controller may launch select multiple candidate
commands for processing from each Submission Queue per round based on the Arbitration Burst setting.

Figure 23: Round Robin Arbitration

4.7.2 Weighted Round Robin with Urgent Priority Class Arbitration

In this arbitration mechanism, there are three strict priority classes and three weighted round robin priority
levels. If Submission Queue A is of higher strict priority than Submission Queue B, then all candidate
commands that are ready for execution in Submission Queue A shall start processing be launched before
candidate commands from Submission Queue B start processing are launched.

The highest strict priority class is the Admin class that includes any command submitted issued to the Admin
Submission Queue. This class has the highest strict priority above commands submitted issued to any other
Submission Queue.

The next highest strict priority class is the Urgent class. Any I/O Submission Queue assigned to the Urgent
priority class is serviced next after commands submitted issued to the Admin Submission Queue, and before
any commands submitted issued to a weighted round robin priority level. Host software should use care in
assigning any Submission Queue to the Urgent priority class since there is the potential to starve I/O
Submission Queues in the weighted round robin priority levels as there is no fairness protocol between
Urgent and non Urgent with those I/O Submission Queues.

The lowest strict priority class is the Weighted Round Robin class. This class consists of the three weighted
round robin priority levels (High, Medium, and Low) that share the remaining bandwidth using weighted round
robin arbitration. Host software controls the weights for the High, Medium, and Low service classes via Set
Features. Round robin is used to arbitrate within multiple Submission Queues assigned to the same weighted
round robin level. The number of candidate commands that may start processing be launched from each
Submission Queue per round is either the Arbitration Burst setting or the remaining weighted round robin
credits, whichever is smaller.

ASQ

SQ

SQ

SQ

RR

Figure 24: Weighted Round Robin with Urgent Priority Class Arbitration

In Figure 24, the Priority decision point selects the highest priority candidate command selected next to start
processing submitted for execution next.

Modify the first paragraph of section 5 as shown below:

The Admin Command Set defines the commands that may be issued submitted to the Admin Submission
Queue.

Modify the first paragraph of section 5.1 as shown below:

The Abort command is used to abort a specific command previously issued submitted to the Admin
Submission Queue or an I/O Submission Queue. Host software may have multiple Abort commands
outstanding, subject to the constraints of the Abort Command Limit indicated in the Identify Controller data
structure in Figure 66. An Abort command is a best effort command; the command to abort may have already
completed, currently be in execution, or may be deeply queued. It is implementation specific if/when a
controller chooses to complete the command when the command to abort is not found.

Modify the first four paragraphs of section 5.2 as shown below:

ASQ

SQ

SQ

SQ

RR

SQ

SQ

SQ

RR

SQ

SQ

SQ

RR

WRR

Priority

Weight(High)

Admin

High

Priority

Medium

Priority

Low

Priority

Weight(Medium)

Weight(Low)

Strict

Priority 2

SQ

SQ

RRUrgent

Strict

Priority 3

Strict

Priority 1

Asynchronous events are used to notify host software of error and health information as these events occur.
To enable asynchronous events to be reported by the controller, host software needs to issue submit one or
more Asynchronous Event Request commands to the controller. The controller indicates an event to the host
by completing an Asynchronous Event Request command. Host software should expect that the controller
may not execute the command immediately; the command should be completed when there is an event to be
reported.

The Asynchronous Event Request command is issued submitted by host software to enable the reporting of
asynchronous events from the controller. This command has no timeout. The controller posts a completion
queue entry for this command when there is an asynchronous event to report to the host. If Asynchronous
Event Request commands are outstanding when the controller is reset, the commands are aborted.

All command specific fields are reserved.

Host software may issue submit multiple Asynchronous Event Request commands to reduce event reporting
latency. The total number of simultaneously outstanding Asynchronous Event Request commands is limited
by the Asynchronous Event Request Limit specified in the Identify Controller data structure in Figure 66.

Modify the second paragraph of section 5.6 as shown below:

The command causes all commands issued submitted to the indicated Submission Queue that are still in
progress to be aborted. The controller does not need to post individual completion status for commands that
have been aborted. Commands that are not able to be aborted should be completed with appropriate
completion status.

Modify the first paragraph of section 5.6.1 as shown below:

After all commands issued submitted to the indicated I/O Submission Queue are either completed or aborted,
a completion queue entry is posted to the Admin Completion Queue when the queue has been deleted. The
completion queue entry shall indicate if commands were aborted. Delete I/O Submission Queue command
specific status values are defined in Figure 44.

Modify the first two paragraphs of section 5.8 as shown below:

The Firmware Image Download command is used to download all or a portion of the firmware image for a
future update to the controller. The Firmware Image Download command may be issued submitted while
other commands on the Admin Submission Queue or I/O Submission Queues are outstanding. The Firmware
Image Download command copies the new firmware image (in whole or in part) to the controller.

The firmware image may be constructed of multiple pieces that are individually downloaded with separate
Firmware Image Download commands. Each Firmware Image Download command includes a Dword Offset
and Number of Dwords that specify a Dword range. The host software shall ensure that firmware pieces do
not have Dword ranges that overlap. Firmware portions may be issued submitted out of order to the
controller.

Modify Figure 60 as shown below:

Figure 60: Get Log Page – SMART / Health Information Log

Bytes Description

0

Critical Warning: This field indicates critical warnings for the state of the controller. Each

bit corresponds to a critical warning type; multiple bits may be set. If a bit is cleared to ‘0’,
then that critical warning does not apply. Critical warnings may result in an asynchronous
event notification to the host.

Bit Definition

00
If set to ‘1’, then the available spare space has fallen
below the threshold.

01
If set to ‘1’, then the temperature has exceeded a critical
threshold.

02
If set to ‘1’, then the device reliability has been degraded
due to significant media related errors or any internal
error that degrades device reliability.

03
If set to ‘1’, then the media has been placed in read only
mode.

04
If set to ‘1’, then the volatile memory backup device has
failed. This field is only valid if the controller has a
volatile memory backup solution.

07:05 Reserved

2:1

Temperature: Contains the temperature of the overall device (controller and NVM included)

in units of Kelvin. If the temperature exceeds the temperature threshold, refer to section
Error! Reference source not found., then an asynchronous event completion may occur

may be issued to the host.

3
Available Spare: Contains a normalized percentage (0 to 100%) of the remaining spare

capacity available.

4

Available Spare Threshold: When the Available Spare falls below the threshold indicated

in this field, an asynchronous event completion may occur may be issued to the host. The
value is indicated as a normalized percentage (0 to 100%).

5

Percentage Used: Contains a vendor specific estimate of the percentage of device life

used based on the actual device usage and the manufacturer’s prediction of device life. A
value of 100 indicates that the estimated endurance of the device has been consumed, but
may not indicate a device failure. The value is allowed to exceed 100. Percentages greater
than 254 shall be represented as 255. This value shall be updated once per power-on hour
(when the controller is not in a sleep state).

Refer to the JEDEC JESD218 standard for SSD device life and endurance measurement
techniques.

31:6 Reserved

47:32

Data Units Read: Contains the number of 512 byte data units the host has read from the

controller; this value does not include metadata. This value is reported in thousands (i.e., a
value of 1 corresponds to 1000 units of 512 bytes read) and is rounded up. When the LBA
size is a value other than 512 bytes, the controller shall convert the amount of data read to
512 byte units.

For the NVM command set, logical blocks read as part of Compare and Read operations
shall be included in this value.

63:48

Data Units Written: Contains the number of 512 byte data units the host has written to the

controller; this value does not include metadata. This value is reported in thousands (i.e., a
value of 1 corresponds to 1000 units of 512 bytes written) and is rounded up. When the
LBA size is a value other than 512 bytes, the controller shall convert the amount of data
written to 512 byte units.

For the NVM command set, logical blocks written as part of Write operations shall be
included in this value. Write Uncorrectable commands shall not impact this value.

79:64

Host Read Commands: Contains the number of read commands issued to completed by

the controller.

For the NVM command set, this is the number of Compare and Read commands.

95:80

Host Write Commands: Contains the number of write commands issued to completed by

the controller.

For the NVM command set, this is the number of Write commands.

111:96

Controller Busy Time: Contains the amount of time the controller is busy with I/O

commands. The controller is busy when there is a command outstanding to an I/O Queue
(specifically, a command was issued submitted via an I/O Submission Queue Tail doorbell
write and the corresponding completion queue entry has not been posted yet to the
associated I/O Completion Queue). This value is reported in minutes.

127:112 Power Cycles: Contains the number of power cycles.

143:128
Power On Hours: Contains the number of power-on hours. This does not include time that

the controller was powered and in a low power state condition.

159:144
Unsafe Shutdowns: Contains the number of unsafe shutdowns. This count is incremented

when a shutdown notification (CC.SHN) is not received prior to loss of power.

175:160

Media Errors: Contains the number of occurrences where the controller detected an

unrecovered data integrity error. Errors such as uncorrectable ECC, CRC checksum failure,
or LBA tag mismatch are included in this field.

191:176
Number of Error Information Log Entries: Contains the number of Error Information log

entries over the life of the controller.

511:192 Reserved

Modify byte 77 of Figure 66 as shown below:

77 M

Maximum Data Transfer Size (MDTS): This field indicates the maximum data

transfer size between the host and the controller. The host should not issue submit
a command that exceeds this transfer size. If a command is processed submitted
that exceeds the transfer size, then the command is aborted with a status of Invalid

Field in Command. The value is in units of the minimum memory page size
(CAP.MPSMIN) and is reported as a power of two (2^n). A value of 0h
indicates no restrictions on transfer size. The restriction includes metadata
if it is interleaved with the logical block data.

Modify bytes 525 through 529 of Figure 66 as shown below:

525 M

Volatile Write Cache (VWC): This field indicates attributes related to the presence

of a volatile write cache in the implementation.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ indicates that a volatile write cache is present. If cleared to ‘0’, a
volatile write cache is not present. If a volatile write cache is present, then the host
may issue Flush commands and control whether it is enabled with Set Features
specifying the Volatile Write Cache feature identifier. If a volatile write cache is not
present, the host shall not issue submit Flush commands nor Set Features or Get
Features with the Volatile Write Cache identifier.

527:526 M

Atomic Write Unit Normal (AWUN): This field indicates the atomic write size for the

controller during normal operation. This field is specified in logical blocks and is a
0’s based value. If a write is issued submitted of this size or less, the host is
guaranteed that the write is atomic to the NVM with respect to other read or write
operations. A value of FFFFh indicates all commands are atomic as this is the
largest command size. It is recommended that implementations support a minimum
of 128KB (appropriately scaled based on LBA size).

529:528 M

Atomic Write Unit Power Fail (AWUPF): This field indicates the atomic write size

for the controller during a power fail condition. This field is specified in logical blocks
and is a 0’s based value. If a write is issued submitted of this size or less, the host is
guaranteed that the write is atomic to the NVM with respect to other read or write
operations.

Modify the second paragraph of section 5.12.1 as shown below:

There may be commands in execution when a Feature is changed. The new settings may or may not apply
to commands already submitted for execution when the Feature is changed. Any commands issued submitted

to a Submission Queue after a Set Features is successfully completed shall utilize the new settings for the
associated Feature. To ensure that a Feature applies to all subsequent commands, commands being
processed in execution should be completed prior to issuing the Set Features command.

Modify the first sentence before the comma in the second paragraph of section 5.12.1.1, 5.12.1.2,
5.12.1.3, 5.12.1.4, 5.12.1.5, 5.12.1.6, 5.12.1.7, 5.12.1.8, 5.12.1.9, 5.12.1.10, 5.12.1.11, and 5.12.1.12 as
shown below:

If a Get Features command is issued submitted for this Feature,

Modify the first paragraph of section 5.14 as shown below:

The Security Receive command transfers the status and data result of one or more Security Send commands
that were previously issued submitted to the controller.

Modify the first paragraph of section 5.15 as shown below:

The Security Send command is used to transfer security protocol data to the controller. The data structure
transferred to the controller as part of this command contains security protocol specific commands to be
performed by the controller. The data structure transferred may also contain data or parameters associated
with the security protocol commands. Status and data that is to be returned to the host for the security
protocol commands issued submitted by a Security Send command are retrieved with the Security Receive
command defined in section 5.14.

Modify the second paragraph of section 6 as shown below:

The NVM Command Set includes the commands listed in Figure 99. The following subsections describe the
definition for each of these commands. Commands shall only be issued submitted by the host when the
controller is ready as indicated in the Controller Status register (CSTS.RDY) and after appropriate I/O
Submission Queue(s) and I/O Completion Queue(s) have been created.

Modify section 6.3 as shown below:

Except for commands that are part of a fused operation, each command is processed as an independent
entity without reference to other commands issued submitted to the same I/O Submission Queue or to
commands issued submitted to other I/O Submission Queues. Specifically, the controller is not responsible for
checking the LBA of a Read or Write command to ensure any type of ordering between commands. For
example, if a Read is issued submitted for LBA x and there is a Write also issued submitted for LBA x, there is
no guarantee of the order of completion for those commands (the Read may finish first or the Write may finish
first).

If there are ordering requirements between commands, host software or the associated application is required
to enforce that ordering above the level of the controller.

The controller supports an atomic write unit. The atomic write unit is the size of write operation guaranteed to
be written atomically to the medium with respect to other read or write operations. The controller supports a
value for normal operation that is potentially different than during a power fail condition, as reported in the
Identify Controller data structure. The host may indicate that the atomic write unit beyond a logical block size
is not necessary by configuring the Write Atomicity feature, which may result in higher performance in some
implementations.

After a write has completed, reads for that location that which are subsequently complete submitted shall
return the data from that write and not an older version of the data from a previous write.

Modify section 7.1 as shown below:

Host software presents submits commands to the controller through pre-allocated Submission Queues. The
controller is alerted to new commands to execute newly submitted commands through SQ Tail Doorbell
register writes. The difference between the previous doorbell register value and the current register write
indicates the number of commands that were submitted are ready for processing by the controller.

The controller fetches the commands from the Submission Queue(s) and transmits them to the NVM
subsystem for processing. Except for fused operations, there are no ordering restrictions for processing of the
commands within or across Submission Queues. Host software should not place commands in the list that
may not be re-ordered arbitrarily. Data may or may not be committed to the NVM media in the order that
commands are received.

Host software issues submits commands of higher priorities to the appropriate Submission Queues. Priority is
associated with the Submission Queue itself, thus the priority of the command is based on the Submission
Queue it is issued through. The controller arbitrates across the Submission Queues based on fairness and
priority according to the arbitration scheme specified in section 4.7.

Upon completion of the commands by the NVM subsystem, the controller presents completion queue entries
to the host through the appropriate Completion Queues. If MSI-X or multiple message MSI is in use, then the
interrupt vector indicates the Completion Queue(s) with possible new command completions for the host to
process. If pin-based interrupts or single message MSI interrupts are used, host software interrogates the
Completion Queue(s) for new completion queue entries. The host updates the CQ Head doorbell register to
release Completion Queue entries to the controller and clear the associated interrupt.

There are no ordering restrictions for completions to the host. Each completion queue entry identifies the
Submission Queue Identifier and Command Identifier of the associated command. Host software uses this
information to correlate the completions with the commands issued submitted to the Submission Queue(s).

Host software is responsible for creating all required Submission and Completion Queues prior to issuing
submitting commands to the controller. I/O Submission and Completion Queues are created using Admin
commands defined in section 5.

Modify section 7.2 as shown below:

7.2 Command Issue Submission and Completion Mechanism (Informative)

This section describes the command issue submission and completion mechanism. It also describes how
commands are built by host software and command completion processing.

Modify the first paragraph and bullets 1 and 2 of section 7.2.1 as shown below:

This section describes command issue submission and completion processing. Figure 137 shows the steps
that are followed to issue and complete a command. The steps are:

1. The host creates a command for execution within the appropriate Submission Queue in host memory.
2. The host updates the Submission Queue Tail Doorbell register with the new value of the Submission

Queue Tail entry pointer. This indicates to the controller that a new command(s) is ready submitted
for processing.

Modify bullet 2 of section 7.2.2 as shown below:

2. Host software shall write the corresponding Submission Queue doorbell register (SQxTDBL)
to submit indicate to the controller that one or more commands are available for processing.

Modify the next to last paragraph of section 7.2.5.1 as shown below:

After the command is built, host software issues submits the command for execution by writing the Admin
Submission Queue doorbell (SQ0TDBL) to indicate to the controller that this command is available for
processing.

Modify the last paragraph of section 7.2.5.2 as shown below:

After the commands are built, host software issues submits the commands for execution by writing the
appropriate I/O Submission Queue doorbell (SQxTDBL) to indicate to the controller that these commands are
available for processing submitted. Note that the doorbell write shall indicate both commands are available
have been submitted at one time.

Modify section 7.3.2 as shown below:

The host may reset and/or reconfigure the Submission and Completion Queues by resetting them. A queue
level reset is performed by deleting and then recreating the queue. In this process, the host should wait for all
pending commands to the appropriate Submission Queue(s) to complete. To perform the reset, the host
issues submits the Delete I/O Submission Queue or Delete I/O Completion Queue command to the Admin
Queue specifying the identifier of the queue to be deleted. After successful command completion of the
queue delete operation, the host then recreates the queue by issuing submitting the Create I/O Submission
Queue or Create I/O Completion Queue command. As part of the creation operation, the host may modify the
attributes of the queue if desired.

The host should ensure that the appropriate Submission Queue or Completion Queue is idle before deleting
it. Issuing Submitting a queue deletion command causes any pending commands to be aborted by the
controller; this may or may not result in a completion queue entry being posted for the aborted command(s).
Note that if a queue level reset is performed on a Completion Queue, the Submission Queues that are
utilizing the Completion Queue should be reset as part of the same operation. The behavior of a Submission
Queue without a corresponding Completion Queue is undefined.

Modify bullet 2 of section 7.4.1 as shown below:

2. Issues Submits a Set Features command for the Number of Queues attribute in order to request the
number of I/O Submission Queues and I/O Completion Queues desired. The completion of this Set

Features command indicates the number of I/O Submission Queues and I/O Completion Queues
allocated.

Modify section 7.4.3 as shown below:

To abort a large number of commands, the recommended procedure is to delete and recreate the I/O
Submission Queue. Specifically, to abort all commands that are issued submitted to the Submission Queue
host software should issue a Delete I/O Submission Queue command for that queue. After the queue has
been successfully deleted, indicating that all commands have been completed or aborted, then host software
should recreate the queue by issuing submitting a Create I/O Submission Queue command. Host software
may then re-issue re-submit any commands desired to the associated I/O Submission Queue.

Modify section 7.6.1 as shown below:

10. If the host desires asynchronous notification of error or health events, the host should issue submit an
appropriate number of Asynchronous Event Request commands. This step may be done at any point
after the controller signals it is ready (i.e., CSTS.RDY is set to ‘1’).

Modify the first bullet 1 of section 7.6.2 as shown below:

1. Stop issuing submitting any new I/O commands to the controller and allow any outstanding
commands to complete.

Modify the second bullet 1 of section 7.6.2 as shown below:

1. Stop issuing submitting any new I/O commands to the controller.

Modify bullet 2 of section 8.1 as shown below:

2. After the firmware is downloaded to the controller, the next step is for the host to issue submit a
Firmware Activate command. The Firmware Activate command verifies that the last firmware image
downloaded is valid and commits that image to the firmware slot indicated for future use. A firmware
image that does not start at offset zero, contains gaps, or contains overlapping regions is considered
invalid. A controller may employ additional vendor specific means (e.g., checksum, CRC,
cryptographic hash or a digital signature) to determine the validity of a firmware image.

a. The Firmware Activate command may also be used to activate a firmware image associated
with a previously activated firmware slot.

Modify the fourth paragraph of section 8.4 as shown below:

The host may dynamically modify the power state using the Set Features command and determine the
current power state using the Get Features command. The host may directly transition between any two
supported power states. The Entry Latency (ENTLAT) field in the power management descriptor indicates
the maximum amount of time in microseconds that it takes to enter that power state and the Exit Latency
(EXTLAT) field indicates that maximum amount of time in microseconds that it takes to exit that state. The
maximum amount of time to transition between any two power states is equal to the sum of the old state’s exit
latency and the new state’s entry latency. The host is not required to wait for a previously issued submitted
power state transition to complete before initiating a new transition. The maximum amount of time for a

sequence of power state transitions to complete is equal to the sum of transition times for each individual
power state transition in the sequence.

Modify section 9.4 as shown below:

Device specific errors such as a DRAM failure or power loss notification errors indicate that a controller level
failure has occurred during the processing of a command. The status code of the completion queue entry
should indicate an Internal Device Error status code (if multiple error conditions exist, the lowest numerical
value is returned). Host software shall ignore any data transfer associated with the command. The host may
choose to re-issue re-submit the command or indicate an error to the higher level software.

Disposition log

Technical input submitted to the NVMHCI Workgroup is subject to the terms of the NVMHCI Contributor’s
agreement.

3/14/2012 Erratum started.
3/21/2012 Added changes to subsections 4.7.1 and 4.7.2.
4/18/2012 Updates from 4/5 meeting and reflector to first paragraph of 4.7.
5/30/2012 Added Arbitration Burst clarification.
6/13/2012 Added fused command clarification and chapter 1 updates.
6/21/2012 Added chapter 3 updates.
6/27/2012 Added Ken’s proposed change to candidate wording, added chapter 4 updates.
7/18/2012 Added HGST’s command processing definition update; added chapter 4 and 5 updates.
7/24/2012 Finished capturing Ken’s changes.
8/3/2012 Updated section 4.7 based on 8/2 Workgroup meeting discussion.
9/10/2012 ECN ratified.

